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Fig. 1. Implicit surface networks, such as implicit arrangement (le, obtained for primitive geometry defining a CAD object) and material interfaces (right, the
Voronoi diagram of rotating 3D lines), produced by our robust algorithms. Each example is visualized by its surface patches, non-manifold curve network as
well as the 3D regions partitioned by the surface network.

Implicit surface networks, such as arrangements of implicit surfaces and

materials interfaces, are used for modeling piecewise smooth or partitioned

shapes. However, accurate and numerically robust algorithms for discretizing

either structure on a grid are still lacking. We present a unied approach

for computing both types of surface networks for piecewise linear functions

dened on a tetrahedral grid. Both algorithms are guaranteed to produce

a correct combinatorial structure for any number of functions. Our main

contribution is an exact and ecient method for partitioning a tetrahedron

using the level sets of linear functions dened by barycentric interpolation.

To further improve performance, we designed look-up tables to speed up

processing of tetrahedra involving few functions and introduced an ecient

algorithm for identifying nested 3D regions.
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1 INTRODUCTION
Implicit shape representations are common in computer graphics

and geometric processing. While the level set of a single implicit

function is routinely used for representing a solid shapewith smooth

boundary, piecewise smooth, and even non-manifold shapes can

be represented using multiple implicit functions. These represen-

tations typically dene a partitioning of the domain into multi-

labelled regions by a network of smooth surface patches meeting at

non-manifold curves. Consider n functions { f1, . . . , fn } in R
d
, two

commonly used multi-function implicit representations are:

• Implicit Arrangement (IA): The surface network is formed by

intersecting the zero-level sets of all functions. Equivalently,

IA partitions space into labelled regions, where the label at

each point x is the set of function signs:

LIA(x) = {siдn(f1), . . . , siдn(fn )} (1)

IA is most often used for constructing piecewise smooth

shapes frommultiple smooth shapes (e.g., CSG [Requicha and

Voelcker 1977] and BSH [Du et al. 2021]). It can also be used

for modeling geological structures [Bagley et al. 2016; Guo

et al. 2021] and 3D curves [Burns et al. 2005; Edelsbrunner and
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Fig. 2. The Implicit Arrangement (IA) of two functions (a), showing the
two zero-level sets (red and blue) and the partitioned regions (colored by
sign configurations), and its discretization by either line segments that
separate vertices with dierent labels within each triangle (b) or the IA
of the piecewise-linearly interpolated functions (c). Note that (b) has a
redundant partition (yellow) not present in (a).

Harer 2002; Ljung and Ynnerman 2003; Thirion and Gourdon

1996].

• Material Interface (MI): The labelling at each point x is the

set of functions with the maximal values:

LMI (x) = {i | fi (x) ≥ fj (x),∀j , i} (2)

The surface network consists of points where multiple func-

tions are maximal (i.e., |LMI (x)| > 1). MI is a standard repre-

sentation for partitioned domains, such as anatomical struc-

tures [Bertram et al. 2005; Zhang et al. 2008], composite mate-

rials [Dillard et al. 2007; Shammaa et al. 2010], bubbles [Zheng

et al. 2009] and multi-phase uids [Kim 2010; Losasso et al.

2006].

To discretize a surface network, the implicit functions are usually

sampled on a grid (e.g., cubical or tetrahedral). Most discretization

methods generate polygons that separate grid points with dierent

labels. While simple to implement, these label-separating methods

cannot capture non-trivial interactions between the surface network

and the grid, such as multiple intersections on a grid edge (e.g., dot-

ted edges in Figure 2 (a) and 3 (a)). As a result, these methods often

produce jagged geometry and incorrect combinatorial structures

(e.g., Figure 2 (b) and 3 (b)). To alleviate these artifacts, one may rst

dene continuous functions that interpolate the values at the grid
points and then compute the surface network of the interpolated

functions. The simplest example of this approach is performing lin-

ear interpolation in each grid cell on a simplicial (e.g., tetrahedral)

grid. The surface network dened by these piecewise linear func-

tions, which consists of planar pieces, often better approximates

the underlying surface network than label-separation methods (e.g.,

Figure 2 (c) and 3 (c)).

However, computing the IA or MI of piecewise linear functions

on a tetrahedral grid can be numerically challenging. The computa-

tion within each tetrahedron involves intersecting multiple planes,

each being the zero-level set of an input function (in IA) or of the

dierence between two functions (in MI). Existing methods [Bagley

et al. 2016; Bonnell et al. 2003; Saye and Sethian 2012] perform these

Fig. 3. The Material Interface (MI) of three functions (a), showing the curve
network (black) and partitioned regions (colored), and its discretization by
either line segments that separate vertices with dierent labels within each
triangle (b) or the MI of the piecewise-linearly interpolated functions (c).
Note the redundant partition (green) in (b).

operations on machine-precision numbers, and hence are prone

to produce incorrect combinatorial structures, or even algorithm

failures, when the level sets are in near-degenerate congurations

(e.g., almost co-planar, or multiple level sets nearly intersecting at

a common line or point). While the computations can be made ex-

act using rational number representations of coordinates and exact

predicates [Fabri et al. 1996], doing so typically incurs a substantial

overhead in performance.

We propose a unied, robust and ecient framework for comput-

ing both IA and MI on a tetrahedral grid. Our main contribution are

algorithms for partitioning a tetrahedron into convex regions by

incremental plane intersection (Section 4). The algorithms are made

exact and scalable by (1) representing each vertex implicitly using

the input functions instead of explicit coordinates and (2) designing

a simple predicate for barycentrically interpolated linear functions,

which we call the barycentric predicate (Section 5). The algorithms

are guaranteed to produce the correct combinatorial structure of the

IA or MI as dened by the input (oating-point) values at the grid

vertices. As secondary contributions, we proposed two mechanisms

to improve eciency on a large grid. First, we pre-computed look-up

tables to speed up processing of tetrahedra in which the network

is dened by a small number of functions (Section 6). Second, we

propose an ecient and numerically robust algorithm that identies

nested 3D regions partitioned by the surface network (Section 7).

Our algorithms are evaluated on both synthetic functions and

challenging realistic inputs, such as those shown in Figure 1 (more

in Section 8). Our algorithms successfully produced surface net-

works for all test examples. As a proxy of correctness, we veried

that the combinatorial structure of each output is consistent across

dierent orderings of the same input functions. In contrast, a non-

robust implementation of the same algorithms frequently fails or

generates inconsistent combinatorial structures, which highlights

robustness issues in existing methods that are implemented on

machine-precision numbers. Performance-wise, our incremental al-

gorithms for partitioning a tetrahedron are two orders of magnitude

faster than state-of-the-art exact methods using rational representa-

tions [Fabri et al. 1996]. Our algorithms are around 3-4 times slower

than label-separating methods, albeit with far fewer artifacts in the
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outputs (e.g., Figures 2 and 3). Furthermore, our IA algorithm ismuch

faster than computing mesh-based arrangement [Cherchi et al. 2020;

Zhou et al. 2016] on individually discretized level sets. Code and data

for this paper are available at https://duxingyi-charles.github.io/

publication/robust-computation-of-implicit-surface-networks-for-

piecewise-linear-functions/.

2 RELATED WORKS
We briey review existing works on discretizing implicit surface net-

works and geometric predicates. We refer readers to [De Araújo et al.

2015] for a survey of polygonization methods of implicit surfaces.

2.1 Discretizing material interfaces
The vast majority of discretization methods for MI aim at separating

grid vertices with dierent labels. Their inputs are typically the

functions values or labels (LMI of Equation 2) associated with the

vertices of a spatial grid. Somemethods determine the combinatorial

structure within a grid cell by the labels at the cell vertices, using

either heuristic case enumeration [Dillard et al. 2007; Nielson and

Franke 1997] or pre-computed tables [Hege et al. 1997; Shammaa

et al. 2008; Wu and Sullivan Jr 2003; Yamazaki et al. 2002] that are

multi-label extensions of the original Marching Cubes look-up table

[Lorensen and Cline 1987]. Other methods compute the surface

network on the dual grid [Bertram et al. 2005; Feng et al. 2010;

Reitinger et al. 2005; Shammaa et al. 2010], and they can be extended

to adaptive grids containing irregular cells [Ju et al. 2002; Zhang

et al. 2007; Zhang and Qian 2012]. These methods, however, have

inherent diculties in approximating parts of the MI that intersect

a grid element in a non-trivial way, such as multiple intersection

points on a grid edge (see Figure 3 (b)) or multiple components of

intersection curves on a grid face.

Only a few methods are capable of computing MI for piecewise

linear functions. Bloomenthal and Ferguson [1995] trace multiple

intersection points on grid edges, but their method cannot handle

complex intersections on grid faces (e.g., multiple curve compo-

nents) or in grid cells (e.g., multiple surface components). Bonnell

et al. [2003] compute the MI within a tetrahedron by rst mapping

the n function values at each vertex into an n-dimensional “material

space” and computing the intersection of the mapped tetrahedron

with a Voronoi diagram in that space. Saye and colleagues [Saye

2015; Saye and Sethian 2012] construct the MI within a tetrahe-

dron by rst computing the polygonal zero-level set of fi − fj for
each pair of functions fi , fj , which is subsequently clipped by the

remaining functions fk (k , i, j), and then snapping the clipped

polygons together. However, these methods all operate on geometry

represented by machine-precision coordinates, and hence are prone

to numerical errors in near-degenerate congurations. Besides pos-

sibly creating incorrect network structures, or structures that are

sensitive to the orderings of functions, numerical error might even

cause the algorithm to fail. For example, Saye’s method [Saye 2015;

Saye and Sethian 2012] assumes that clipping a convex polygon by

a line results in a convex polygon, which is not always true when

working with machine-precision numbers.

A common drawback of grid-basedmethods, ours included, is that

the result may include many poorly shaped triangles (e.g., slivers).

Heuristics have been proposed to improve the triangle quality in a

post-process while maintaining the combinatorial structure of the

surface network [Dillard et al. 2007; Saye 2015], and they can be

applied to any polygonalized MI. Alternatively, a class of methods

create high-quality triangles directly from the input point samples

[Boltcheva et al. 2009; Bronson et al. 2014; Dey et al. 2012; Meyer et al.

2008; Pons et al. 2007]. These algorithms often start by extracting

the network of non-manifold curves on the grid, and therefore they

could benet from grid-based algorithms with improved accuracy

and robustness.

2.2 Discretizing implicit arrangements
Arrangements of discrete geometry have been extensively studied

in computational geometry [Agarwal and Sharir 2000]. For smooth

shapes dened by implicit functions, computing geometrically and

topologically correct arrangements remains a challenging task, and

methods with theoretical guarantees are only known for 2D func-

tions [Alberti et al. 2008; Berberich et al. 2012; Lien et al. 2014]

and low-degree 3D polynomials [Dupont et al. 2007; Mourrain et al.

2005; Schömer and Wolpert 2006].

Several algorithms discretize implicit 3D curves, dened as the

intersection of the level sets of two functions, on a grid by creat-

ing line segments within grid cells [Burns et al. 2005; Ljung and

Ynnerman 2003; Thirion and Gourdon 1996]. However, they are

typically limited to processing two functions and their outputs do

not include surfaces. One could discretize IA by adapting any of

the aforementioned label-separating methods for MI, simply by re-

placing the material label LMI at each grid point with the signs

LIA (Equation 1). However, such adaptation would inherit the same

diculties in reproducing ne features of IA, as illustrated in Figure

2 (b), when IA has multiple intersections with a grid element (e.g.,

the highlighted edges).

We are aware of only a few methods that can compute the IA

for piecewise linear functions on a tetrahedral grid [Bagley et al.

2016; Guo et al. 2021; Kim et al. 2000]. All of them adopt a similar

grid-renement approach: the functions are processed sequentially,

and for each function, its level set is used to split existing tetrahedra

into smaller ones. As the intersection operations are also performed

on machine-precision coordinates, like discretization methods for

MI for piecewise linear functions, these methods may fail to pro-

duce accurate or consistent combinatorial structures of IA due to

numerical imprecision.

An alternative, robust way to compute IA for piecewise linear

functions is to rst extract the level set of each function individ-

ually (e.g., using Marching Tetrahedra [Doi and Koide 1991]) as a

mesh and then compute the arrangement of these meshes using

robust methods like [Cherchi et al. 2020; Zhou et al. 2016]. In our

experiments (see Section 8), we found that this two-step approach is

much less ecient than computing intersections directly on a grid,

because a signicant overhead in mesh arrangement is building

a spatial query structure (e.g., K-d tree or BSP tree) for locating

triangles that intersect.
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2.3 Exact predicates and representations
Geometric predicates are key components in robust geometry pro-

cessing algorithms. Shewchuk [1997] uses fast and adaptive ex-

tended oating point operations to robustly conduct orientation

and in-circle tests for Delaunay triangulation. CGAL library [Fabri

et al. 1996] provides a similar set of predicates using their exact com-

putation kernel, which relies on rational representation of geometric

quantities. Lévy [2016] proposed a general purpose Predicate Con-

struction Kit (PCK) for designing arbitrary “exotic” predicates. PCK

is available as part of the open source library Geogram [Lévy and

Filbois 2015], which contains the current state-of-the-art predicate

implementations.

A geometry processing algorithm often needs to construct inter-

mediate quantities, such as the intersection point between a line and

a plane that is needed for subsequent intersection tests. To prevent

lost of accuracy, all computations can be performed on rational rep-

resentations, but at a signicant computational cost. To circumvent

this problem, Sugihara et al. [1989] proposed to use planes as the

primary input and to indirectly represent points as intersections of

planes. They showed that common predicates such as orientation

tests can be expressed eciently using plane-based representations.

This idea proves to be very useful for CSG operations [Bernstein

and Fussell 2009; Campen and Kobbelt 2010; Nehring-Wirxel et al.

2021] where all intermediate constructions can be represented ex-

actly using input planes. Attene [2020] proposed indirect predicates

which can take both direct or indirect (i.e. using plane-based repre-

sentation) points as input. Combined with a predicate generation

program similar to PCK, the construction of indirect points becomes

part of the predicate computation and thus leads to robust compu-

tation for a variety of applications [Cherchi et al. 2020; Diazzi and

Attene 2021].

As our algorithms also involve intermediate constructions, we

follow the idea of plane-based representations and tailor it further to

IA and MI. We also develop a new orientation predicate for implicit

geometry dened by barycentric interpolation.

3 METHOD OVERVIEW
Our algorithms take as input a tetrahedral mesh M and a vector

{ fv ,1, ..., fv ,n } at each vertex v , so that fv ,i is the value of implicit

function
ˆfi : R3 → R at v . Let fi be the approximation of

ˆfi by
continuous, piecewise linear interpolation of vertex values over M .

Our algorithms produce either the IA or MI of { f1, . . . , fn } within
M .

We adopt the same “marching” approach as existing algorithms

[Bloomenthal and Ferguson 1995; Bonnell et al. 2003; Saye and

Sethian 2012] and process each tetrahedron t in turn. For eciency,

we consider only those functions that contribute to the surface

network within t , which we call the active functions. In practice, the

number of active functions is usually far fewer than n. The criterion
of activeness depends on the type of surface network. For IA, a

function fi is active in t if and only if its zero-level set intersects t .
This can be easily checked using the signs of fv ,i at the four vertices
of t - they cannot be all positive or all negative. For MI, it is not easy

to determine the active status of fi without computing the surface

network. However, a necessary criterion for fi being active is that

there is no other function fj (j , i) that “dominates” fi , meaning

fv , j > fv ,i at all vertices v of t . Although some inactive functions

might be included, we adopt this criterion due to its simplicity.

Our algorithms proceed in two stages. In the rst stage, they

extract the IA or MI of the active functions within each tetrahedron

using an incremental construction, which is described in Section 4.

Section 5 then describes our core contributions, the vertex encoding

and predicates, which ensure the robustness and eciency of the

construction. Finally, Section 6 describes the use of look-up tables

to speed up the computation for tetrahedra with a small number of

active functions.

In the second stage, described in Section 7, the polygonal net-

works within individual tetrahedra are combined to form the com-

plete surface network and obtain the partitioning of space into 3D

regions. Since some regions may be bounded by multiple discon-

nected surfaces (i.e., an exterior boundary with one or more interior

boundaries), we introduce a topological ray-shooting approach that

can eciently and robustly detect all surfaces bounding a 3D region.

4 INCREMENTAL CONSTRUCTION
Consider a tetrahedron t and let { f1, . . . , fk } be the set of active, lin-
ear functions within t . Our algorithms are motivated by the fact that

both IA and MI induce a convex decomposition of t . The convexity
trivially holds for IA, which partitions t by the planar zero-level sets
of all functions. To see whyMI is convex, consider the hyperplane in

4-dimensions dened by each function fi asw = fi ({x,y, z}) where
x,y, z,w are the 4 coordinate components. MI is the 3D projection

of the convex upper envelope of these hyperplanes. Figure 4 shows
examples of IA and MI of linear functions in a 2D triangle, as well

as the corresponding upper envelope in 3D for each MI.

(a) Implicit arrangements

(b) Material interfaces

Fig. 4. Examples of IA of 3 functions (a) and MI of 4 functions (b) in a
triangle. Each MI is shown below as the upper envelope of planes in 3D.
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We compute the IA or MI within t incrementally by processing

one function at a time. We represent the convex decomposition

induced by the surface network as a cell complexC , whose 0-, 1-, 2-,
and 3-dimensional elements are called vertices, edges, faces, and cells.
InitiallyC is the tetrahedron t itself. After processing fi (i = 1, . . . ,k
for IA and 2, . . . ,k for MI), C is updated to be the decomposition

of the rst i functions, { f1, . . . , fi }. We next detail the updating

process separately for IA and MI.

4.1 Updating IA
Updating IA amounts to identifying the intersections between the

elements of the current cell complex, C , and the planar zero-level

set of the next function, fi . Since all elements of C are convex,

and assuming robust computations (see Section 5), the intersection

between the level set and any element ofC is either empty or a single

connected component. This leads to a simple, bottom-up splitting

algorithm.

First, the signs of fi are computed at each vertex ofC . We assume

that each sign is either + or - (the 0 case is discussed below). Next,

for each edge of C whose two ends exhibit dierent signs, a new

cut-vertex is created where the edge intersects with the level set, and
the edge is split into two. Then, for each face of C whose boundary

vertices have dierent signs, there must be exactly two cut vertices

on the boundary edges. These cut vertices are connected to create a

new cut-edge that splits the face into two. Finally, for each cell of C
whose boundary vertices have dierent signs, the cut edges on the

boundary faces must form a single closed loop. A new cut-face is
created from the loop and splits the cell into two. The algorithm is

illustrated in Figure 5 where C consists of a single cell.

Fig. 5. Spliing a (convex) cell by a plane: computing signs (a), spliing edges
(b), spliing faces (c), and spliing the cell (d). The cut-vertices, cut-edges,
and cut-faces are highlighted in red.

In the degenerate situation that some vertex signs are 0, meaning

that they lie exactly on the level set of fi , we make the observation

that an element e should be split only if the level set of fi intersects
the interior of e and does not completely contain e . We therefore

introduce the following changes to the algorithm above to accom-

modate degeneracy. First, an element (edge, face or cell) is split if

it has at least one positive vertex and one negative vertex. Second,

a cut edge connects either cut vertices or 0-signed vertices of C .
Third, a cut face is formed by a loop of either cut edges or edges of

C connecting two 0-signed vertices.

4.2 Updating MI
Updating MI is similar to IA but slightly more involved. To motivate

our algorithm, recall that the MI is the projection of the upper

envelope of hyperplanes in one higher dimension. Given a new

hyperplane, the upper envelope can be updated by (1) computing

the intersections between the current envelope elements and the

hyperplane, and (2) removing elements that are either under the

original envelope or the new hyperplane. Figure 6 bottom illustrates

this process for updating the upper envelope of two 3D hyperplanes

after adding a third hyperplane.

The two steps mentioned above can be implemented without

going to the 4-th dimension. We assume that each vertex v of C is

associated with the material labels LMI (v) (Equation 2) from the

rst i − 1 functions (the labels are updated together with C). In the

rst, splitting step, each element e ofC is intersected with the planar

zero-level set of fj − fi where j ∈ [1, i − 1] is a common label among

all vertices of e . Note that the choice of fj changes with the element

e . The splitting step can be implemented using the same bottom-

up algorithm described above for IA (Figure 5), with one crucial

modication: the sign at a vertex v of C is computed for fj − fi
(instead of fi ), where j is any label at v . In the second, merging step,
all elements of C after splitting that contain at least one negatively

signed vertex are merged along their common boundaries. The two

steps are illustrated in Figure 6 top.

(a) (b) (c)

Fig. 6. Top: updating the MI of two functions (a) by adding a third function
via spliing (b) and merging (c). The signs at the vertices are indicated in
(b). Boom: the corresponding actions on the hyperplanes in 3D.

4.3 Complexity analysis
The incremental construction of IA takesO(k4) time for k functions.

This is because processing each fi using the bottom-up splitting

algorithm needs to visit allO(i3) elements in the arrangement of i−1
planes. With a more sophisticated algorithm, this complexity can

be reduced to O(i2) (and the overall complexity to O(k3)) [Chazelle
and Edelsbrunner 1992]. However, since k is typically small for

most tetrahedra, the eciency gain at large k can be negligible

in the overall runtime. Processing fi for MI takes only O(i2) time,

which is the size of the upper envelope of i − 1 hyperplanes in 4D

[Agarwal and Sharir 2000], and hence the incremental construction

of MI takes O(k3) time. In practice, we observed that this runtime

is nearly linear (see Section 8).
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5 EXACT COMPUTATION
The successful execution of the algorithm above, and the correctness

of its result, both hinge on the robust computation of the vertex

signs during bottom-up splitting (Figure 5 (a)). Incorrect signs would

lead to a wrong set of elements of the cell complex being split, which

in turn would lead to a erroneous combinatorial structure of the

surface network. Furthermore, the splitting algorithm may fail to

proceed, if the signs at the vertices of an element of C require the

creation of multiple cut-elements (e.g., multiple cut-edges on a face

or multiple cut-faces in a cell).

Exact signing can be achieved by performing all computations

on vertex coordinates represented as rational numbers [Fabri et al.

1996]. However, such computations are much more costly than

working with oating-point numbers, and the cost only grows with

more iterations of the incremental algorithm, since the newly con-

structed vertices have even more complex rational representations.

To maintain eciency without sacricing accuracy, we introduce

a xed-length encoding for vertices and an exact predicate that

operates on oating point numbers.

5.1 Vertex encoding
We follow the idea in [Sugihara et al. 1989] to represent points indi-
rectly by the planes they lie on. Observe that each vertex in the cell

complex C is the unique intersection of 3 planes. A plane can be the

level set of a function (for IA), the level set of the dierence between

two functions (for MI), or the supporting plane of a tetrahedral face

(for a vertex on the tetrahedral boundary). Specically, a vertex v
that lies on a d-dimensional element of the tetrahedron is the result

of intersecting 3 − d supporting planes of tetrahedral faces with

either the zero-level sets of d functions (for IA) or the zero-level

sets of pairwise dierences among d + 1 functions (for MI). This

is illustrated in Figure 7. In degenerate cases, v may lie on more

planes, but there are at least 3 planes that intersect uniquely at v
(otherwise v would have been part of an edge or face of C).

3 tet faces 3 tet faces
1 function

2 tet faces
1 function

2 tet faces
2 functions

1 tet face
2 functions

1 tet face
3 functions

3 functions 4 functions

IA MI

Fig. 7. Vertices in an IA (le) and MI (right) encoded by their defining
functions and supporting tetrahedral faces.

We encode each vertex by the indices of the functions and tetrahe-

dra faces associated with the three planes intersecting at the vertex.

This encoding is unique for each vertex, and it has a xed length (3

integers for IA and 4 integers for MI) for all vertices of C regardless

of the number of functions.

5.2 Barycentric predicates
We now describe how to check the sign of some function fi at
a vertex using our encoding scheme. Consider a vertex v on a d-
dimensional element e of the tetrahedron, for d ∈ [0, 3], and suppose

v lies on the zero-level sets of functions {д1, . . . ,дd }. Each дi is ei-
ther an input function encoded atv (in IA) or the dierence between

two encoded functions (in MI). Given a new function дd+1, being
either fi itself (in IA) or the dierence between fi and any function

encoded at v , we need to determine the sign of дd+1(v).
We leverage the fact that each function дi is implicitly dened

by the values at the vertices of e , which are oating point numbers

given as input. We introduce a simple predicate that involves only

those input values. Let дj ,i be the value of дi at the j-th vertex of e ,

and let gi = {д1,i , . . . ,дd+1,i }
T
be the column vector of all values

of дi . The value of function дi at any point x can be written as

дi (x) = gTi · x (3)

where x = {x1, . . . , xd+1}
T
is the barycentric coordinates of x with

respect to the vertices of e , and
∑d+1
i=1 xi = 1. The barycentric coor-

dinates v of vertex v , where functions {д1, . . . ,дd } all evaluate to 0,

thus satisfy:

Av = b (4)

where A = {g1, . . . , gd , 1}T and b = {0, . . . , 0, 1}T . Solving Equa-

tion 4 using Cramer’s rule and substituting x = v into Equation 3

yields:

дd+1(v) = det(A′)/det(A) (5)

where A′ = {g1, . . . , gd+1}T . Note that det(A) , 0 in our algorithm,

because our encoding ensures that the zero-level sets of {д1, . . . ,дd }
always have a unique intersection point, implying that the solution

to Equation 4 uniquely exists. As a result, дd+1(v) is always well-
dened. The sign of дd+1(v) can be determined by the following

barycentric predicate:

sign(det(A′)) × sign(det(A)) (6)

To ensure correctness, we implemented the predicate using an

extension of the Predicate Construction Kit (PCK) provided by [At-

tene 2020]. It employs a tiered evaluation system with three tiers:

semi-static ltering, interval arithmetic and exact computation with

extended oating point representation. Our implementation takes

input function values directly to avoid the accidental introduction

of oating point errors due to intermediate value computation. In

particular, for MI, we ensure thatдi ’s, which represent the dierence
of two input functions, are evaluated inside of the predicates so its

associated oating point errors are tracked.

6 LOOK-UP TABLES
The incremental construction algorithm can process any number

of active functions in a tetrahedron. In practice, the majority of

tetrahedra in a grid contain very few active functions. We found

that by far the most common non-empty tetrahedra are ones that

contain a single planar polygon, which are dened by 1 (for IA) or 2

(for MI) active functions, followed by tetrahedra that contain several

polygons meeting at a non-manifold edge, which are dened by 2

(for IA) or 3 (for MI) active functions.

In this section, we describe the design and creation of look-up

tables that speed up the processing of these common types of tetra-

hedra. We only resort to incremental construction during runtime if

the tetrahedron contains more than 2 (for IA) or 3 (for MI) functions,

or if any vertex sign or edge predicate (see below) is zero.
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6.1 IA with 1 function or MI with 2 functions
The IA in a tetrahedron containing a single active function can be

easily tabulated into a look-up table with 2
4 = 16 entries, indexed by

the sign of the function value at each tetrahedral vertex. A similar

table can be made for MI within a tetrahedron containing two active

functions, where the sign is taken of the dierence between the two

function values.

6.2 IA with 2 functions
Now consider the IA in a tetrahedron containing two active func-

tions. The signs of both functions at the tetrahedral vertices are

necessary to disambiguate dierent combinatorial structures of the

IA, but they are not sucient: we also need, on each tetrahedral

edge that intersects both level sets, the order of the two intersection

points along the edge. We call such an edge ambiguous (see Figure
8 (a)). The ambiguity can be resolved by evaluating the barycentric

predicate (Equation 6) on that edge.

Fig. 8. Ambiguous edges (gray) for IA (a) andMI (b). An edge is ambiguous if
the number or ordering of edge intersections cannot be uniquely determined
by the signs (for IA) or ordering (for MI) of functions at the vertices. The
functions along each ambiguous edge are ploed underneath.

We could create a single table of 2
14 = 16, 384 entries indexed by

the 8 signs at the vertices (4 signs for each function) and the 6 signs

on the edges (one for each predicate). However, looking up this table

would require computing the predicates for all 6 edges, regardless of

whether they are ambiguous. To avoid unnecessary computations,

we use a two-tier table structure. First, we create a main table with
2
8 = 256 entries indexed by the 8 signs at the vertices. Each entry

of the table consists of a list ofm edges that are ambiguous based

on that sign conguration, and a branch table with 2
m

entries of

IA indexed by them predicate signs on the ambiguous edges. To

use the look-up table, we rst nd the list of ambiguous edges in

the main table using the vertex signs, then evaluate the predicate

on each ambiguous edge, and nally nd the IA in the branch table

using the predicate signs.

The look-up tables are created automatically by running the in-

cremental construction algorithm for every combination of vertex

signs and every combination of edge predicates on the ambiguous

edges determined by the vertex signs. For combinations that lead to

ambiguity during splitting, their entries in the tables are left empty,

because they will not arise during runtime thanks to our robust

implementation.

6.3 MI with 3 functions
Look-up tables for MI with three active functions are created sim-

ilarly to IA with two functions. We call an edge ambiguous if it
intersects with the level sets of more than one dierence functions

(there are three in total), and if the ordering of the intersections

along the edge cannot be uniquely determined from the ordering

of the functions at the two edge vertices. It can be shown that, for

any ambiguous edge, the functions must have opposite orderings at

the two vertices (i.e., f1 > f2 > f3 at one vertex and f1 < f2 < f3 at
the other; see Figure 8 (b)). The ambiguity can again be resolved by

evaluating the barycentric predicate on that edge.

The structure of the tables are the same as in IA. The main table

stores, for each combination of vertex signs, the list of ambiguous

edges and a branch table. Each branch table then stores the MI

for each combination of predicate signs on the ambiguous edges.

The main table consists of 2
12 = 4096 entries indexed by the 12

signs at the vertices, 4 for each dierence function. The tables are

automatically generated, similar to IA.

7 SPACE DECOMPOSITION
After processing all the tetrahedra, polygons on the surface net-

work (IA or MI) within each tetrahedron are combined to form a

complete surface network. Using the plane-based encoding (Sec-

tion 5), duplicate polygon vertices created in adjacent tetrahedra

on their common edges or faces can be unambiguously identied

and unied. Aided by the cell complexes computed in the tetrahe-

dra, we can then create a topological decomposition of the surface

network, including the manifold surface patches, the network of

non-manifold curves, and their adjacency (including the ordering of

patches meeting at a non-manifold curve), without using geometric

coordinates.

To obtain a full decomposition of space, we also need to identify

individual 3D regions partitioned by the surface network. Note that

a region may be bounded by several disconnected surfaces. This

happens either when the region encloses other “nested” regions

or when the region’s boundary extends to the boundary of the

gridM . Correctly identifying regions bounded by multiple bound-

ary components can be numerically challenging, even in 2D, when

those components are very close to each other [Bajaj and Dey 1990].

While exact results can be obtained using rational representations

[Zhou et al. 2016], this can lead to a signicant overhead in perfor-

mance (see Section 8.3). Leveraging the grid structure and the cell

complexes within the tetrahedra, we present a region identication

algorithm that is both ecient and numerically robust.
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7.1 Topological ray shooting
A straightforward approach for identifying 3D regions is to group all

neighboring 3D cells in individual tetrahedra that are not separated

by the surface network. While the result is correct, doing so requires

traversal of all tetrahedra, including the empty ones. In practice, we

observed that this approach quickly becomes the main bottleneck

of the algorithm as the grid size increases (see Section 8).

We adopt an alternative approach that is equally robust but more

ecient. This approach identies the surfaces that bound each re-

gion using ray-shooting. In a nutshell, we shoot one ray from each

connected componentC of the surface network, so that the ray does

not hit C again. If the ray hits another component C ′
of the surface

network, the ray must have travelled through a 3D region bounded

by (at least) two separate surfaces, each belonging to either C or

C ′
. After all rays are shot, each group of bounding surfaces that

are connected via the rays become the boundary of a 3D region.

To avoid computing ray-surface intersections numerically, we use

topological rays that travel along the edges of the tetrahedral gridM .

In this way, intersections between the ray and the surface network

can be directly obtained from the cell complexes computed within

the tetrahedra. We next describe the algorithm in details.

We dene a shell as a connected component of the boundary of a

region. Each shell can be obtained as a connected set of manifold

surface patches oriented towards the same open space. A 2D example

of shells is shown in Figure 9 (b) for the curve network in (a). Observe

that a region may be bounded by multiple shells due to nesting

(e.g., region C) or having open boundaries (e.g., region B). Our

algorithm maintains a graph G whose nodes are all shells in the

surface network, plus one representing the “outer shell”. A described

below, each ray connects two nodes of the graph representing shells

where the ray starts and ends. After all rays are shot, nodes in each

connected component of G are the shells bounding each 3D region

(see Figure 9 (d)).

Prior to ray-shooting, we rst establish an ordering Φ of all grid

vertices. During ray shooting, the ray travels in the “steepest descent”

direction according to Φ. That is, after visiting some vertex v , the
ray would next visit an adjacent vertex of v with a lower order (if

multiple such vertices exist, the one with the lowest order is chosen).

To ensure correctness of the algorithm, we seek a Φ such that no two

vertices ofM have the same order and, importantly, there is only one

vertex ofM (called the sink) that has lower order than all its adjacent
vertices. The sink vertex corresponds to the “outer shell” node in

the aforementioned graph G. Assuming that M has no inverted or

degenerate tetrahedra and its boundary is convex (e.g., a cube), a

simple and numerically robust choice of Φ is the lexicographic order

of the {x,y, z} coordinates of the grid vertices. There is no need

to explicitly sort all vertices, because ray-shooting only needs to

compare two vertices at a time. The ordering is illustrated in Figure

9 (c).

For each connected componentC of the surface network, we select

a vertex ofC to start the ray so that the ray does not hitC again. To

do so, we call a vertex p of the surface network an edge-point if it lies
on an edge {v,u} ofM (assuming Φ(v) < Φ(u)), and we associate p
with an ordering vector {v,u, i} where i is the number of additional

edge-points between p and v . Among all edge-points of C , we start

Fig. 9. Topological ray shooting in 2D. (a): A curve network that partitions
the plane into five 2D regions (A,B,C,D,E). (b): Shells of the curve network.
(c): Grid vertex ordering (as color), the sink vertex, and the topological rays
(red arrows, one for each component of the curve network). (d): The graph
G in which nodes are shells, edges correspond to rays, and each connected
component corresponds to a 2D region.

the ray from the edge-point with the lexicographically smallest

ordering vector. We terminate the ray when it either encounters

another edge-point or arrives at the sink. In either case, the shells

at the two ends of the ray are connected in the graphG. Examples

of rays and corresponding graph edges are shown in Figure 9 (c,d).

We prove in Appendix A that the algorithm produces the correct

result for any tetrahedral grid M with a simple topology (i.e., no

holes or handles) and any implicit surface network that induces

a convex decomposition within each tetrahedron (e.g., IA or MI).

Compared with the cell-grouping approach, which needs to visit

all tetrahedra, ray-shooting only needs to visit the vertices of the

surface network and grid edges on the rays, which are typically far

fewer in number.

8 RESULTS
We evaluate the robustness and eciency of the algorithms using

both synthetic and real-world data. Our algorithms are implemented

in C++. The algorithms have no parameters. Other than the extended

PCK [Attene 2020] and the Abseil [Google 2017] library for ecient

hash tables, our implementation does not use any external libraries.

Our algorithms canwork on any type of tetrahedral grids (structured

or unstructured). For consistency during evaluation, all tests are

performed on tetrahedral grids converted from a uniform cubic grid

by dividing each cube into ve tetrahedra. All timings were obtained

on a MacBook Pro with 2.6GHz 6-Core Intel Core i7 CPU and 16

GB memory.
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IA

MI

Fig. 10. From le to right: Example cell complexes of IA (top row) and MI
(boom row) computed inside a tetrahedron using our exact algorithm
for point-, segment-, tri- and quad-degeneracies in our first test set. Faces,
edges, and vertices of the cell complex are shown as colored polygons, gray
tubes, and pink balls.

8.1 Robustness
We stress tested our algorithm in various near-degenerate scenarios

that are challenging for numerical computations. As a proxy for

existing methods that rely on imprecise, oating-point computa-

tions [Bagley et al. 2016; Bonnell et al. 2003; Saye and Sethian 2012],

we created a variant of our algorithm that replaces the exact im-

plementation of the barycentric predicate (using PCK) by a naive

oating-point implementation. Since this version retains our exact,

plane-based encoding of vertices, it is alreadymore robust than these

previous methods. For each test case, we ran both our algorithm and

the oating-point variant twice with dierent orders of the same

functions, and we dierentiate between two types of failures. If the

algorithm proceeds but outputs a dierent cell complex structure in

each run, we report a Type I failure. If the algorithm fails to proceed

in either run, due to ambiguity in the splitting algorithm (Section

4.1) caused by incorrect signs, we report a Type II failure.
Our rst test set consists of functions dened over a tetrahe-

dron whose level sets (for IA) or level sets of their dierences (for

MI) almost intersect at a common point, line segment, triangle,

or quadrilateral. We call these scenarios point-, segment-, tri-, and
quad-(near-)degeneracies. We used 4 functions for IA and 5 func-

tions for MI, and randomly generated 10,000 inputs for each type

of near-degeneracy (Figure 10 shows one example for each type).

Table 1 summarizes the success rates and failure types for our al-

gorithm (“exact”) and the oating-point variant (“oat”). Note that

our algorithm succeeded 100% of the time, while the oating-point

implementation had high failure rates of both types.

Our second test set involves functions dened over a 100
3
grid

with slightly shifted level sets (or dierence level sets). For IA, each

input consists of 4 functions whose zero-level sets are spheres each

shifted from a previous one in a xed direction by a distance of

ϵ (the grid has dimension 2 × 2 × 2). For MI, we added one more

function that is zero everywhere. We tested with four dierent ϵ
values and, for each value, generated 100 inputs each with a random

shifting direction. The results are summarized in Table 2. Observe

that our exact algorithm once again achieved 100% success rate,

whereas the oating-point variant encountered more failures as ϵ
decreases and did not succeed even once for ϵ ≤ 4e-7. Figure 11

Table 1. Summary for IA and MI with our algorithm (“exact”) and a floating-
point variant (“float”) on 10,000 inputs in each near-degenerate scenario in
our first test set.

Degeneracy type Alg Success Failure I Failure II

[IA] Point exact 100% - -

[IA] Segment exact 100% - -

[IA] Tri exact 100% - -

[IA] Quad exact 100% - -

[IA] Point oat 68.73% 31.27% -

[IA] Segment oat 3.88% 44.08% 52.04%

[IA] Tri oat 27.76% 21.22% 51.02%

[IA] Quad oat 13.83% 18.49% 67.68%

[MI] Point exact 100% - -

[MI] Segment exact 100% - -

[MI] Tri exact 100% - -

[MI] Quad exact 100% - -

[MI] Point oat 41.80% 58.20% -

[MI] Segment oat 12.53% 51.29% 36.18%

[MI] Tri oat 67.02% 18.07% 14.91%

[MI] Quad oat 52.94% 23.38% 23.68%

shows one example of IA where the oating-point version reports a

Type I failure (inconsistent structures). Observe that the oating-

point version creates a non-trivial network of non-manifold curves,

whereas our exact algorithm correctly nds the (almost coinciding)

circles of intersection between the shifted spheres. The resulting IA

partitions the space into several extremely thin regions sandwiched

between spheres, as shown in the exploded view.

Table 2. Result for IA and MI with our algorithm (“exact”) and a floating-
point variant (“float”) on 100 inputs in each ϵ seing in our second test
set.

Type ϵ Alg Success Failure I Failure II

[IA] 1e-7 exact 100% - -

[IA] 4e-7 exact 100% - -

[IA] 7e-7 exact 100% - -

[IA] 1e-6 exact 100% - -

[IA] 1e-7 oat 0% 0% 100%

[IA] 4e-7 oat 0% 0% 100%

[IA] 7e-7 oat 4% 3% 93%

[IA] 1e-6 oat 78% 3% 19%

[MI] 1e-7 exact 100% - -

[MI] 4e-7 exact 100% - -

[MI] 7e-7 exact 100% - -

[MI] 1e-6 exact 100% - -

[MI] 1e-7 oat 0% 0% 100%

[MI] 4e-7 oat 0% 0% 100%

[MI] 7e-7 oat 6% 23% 71%

[MI] 1e-6 oat 76% 12% 12%
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Exact Float

Fig. 11. Right: IA computed by our exact algorithm and a floating-point
variant for one input in our shied-spheres test set. In this and following
figures, patches of the surface network are distinguished by colors, and the
network of non-manifold curves is visualized as gray tubes connecting at
pink balls. The rendering artifacts in this example near the non-manifold
curves are due to multiple surfaces being extremely close to each other. Le:
an exploded view of the 3D regions partitioned by the IA computed by the
exact algorithm.

8.2 Performance of incremental construction
We benchmarked the incremental construction algorithm (Section

4) within a tetrahedron. Figure 12 plots the running time up to a 100

functions for both IA and MI. Consistent with our analysis earlier

(Section 4.3), incremental construction of IA shows a polynomial

growth in time. Interestingly, running time for MI has a near-linear

growth, despite a cubic worst-case complexity. This indicates that

the size of MI has a much lower complexity in practice than that

of the IA (note that an arrangement of planes always has cubic

complexity).

Fig. 12. Running times of incremental construction for IA (le) andMI (right)
with increasing number of linear functions within a single tetrahedron.

We further compared our IA construction algorithm with an

alternative implementation in CGAL [Fabri and Pion 2009] that

uses exact representation of vertex coordinates. Specically, we

partition the tetrahedron using CGAL’s “clip” function and adopt the

exact_predicate_exact_constructions_kernel, which uses rational

numbers to represent coordinates and compute predicates. We ran

our algorithm (without look-up table) and CGAL’s on 100 instances

of 1, 2, or 3 randomly generated functions within a tetrahedron,

and the running times are reported in Table 3. Observe that our

algorithm is around two orders of magnitude faster than CGAL’s.

We attribute the signicant speed up to our plane-based encoding

scheme, which not only has a xed length but also avoid the need

to explicitly compute coordinates, and to our oating-point-based

barycentric predicate.

Table 3. Mean running time and standard deviation of incremental con-
struction for IA over 100 instances of N linear functions, using either our
algorithm or CGAL’s clipping function with exact, rational representation
of coordinates.

N Method Mean (µs) Standard Deviation (µs)

1 [CGAL] 666.3 186.1

1 [ours] 6.6 1.1

2 [CGAL] 1754.8 673.6

2 [ours] 13.7 2.5

3 [CGAL] 3302.8 1403.6

3 [ours] 26.3 5.5

Fig. 13. Performance evaluation for IA. (a): IA computed by our method for
18 spherical functions, showing the patches (with mesh edges in the zoom-
in), the non-manifold curve network, and exploded regions. (b,c): Number
of tetrahedra containing 1, 2 or more active functions with the increase in
either the grid resolution (using 4 functions) or the number of functions (at
the highest grid resolution). (d,e): Timing of our algorithm (mesh extraction
only and full pipeline), label-separation, and mesh arrangement.

8.3 Performance of complete algorithms
We evaluated the performance of our algorithms on grid data with

various resolutions and geometric complexity. For comparison, we

implemented a standard label-separating algorithm [Dillard et al.

2007; Nielson and Franke 1997] for both IA and MI, using the deni-

tions of vertex labels in Equations 1 and 2. Since our implementation

of label-separation does not produce a full space decomposition into

3D regions, we only report the timing for extracting the polygonal
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mesh and compare with the corresponding stage in our algorithm

(before space decomposition). For IA, we additionally compared

with the two-step approach of rst extracting the zero-level set of

each function using Marching Tetrahedra (we use an implementa-

tion in libigl [Jacobson et al. 2018]) as meshes and then computing

mesh arrangement by [Cherchi et al. 2020].

We start with our IA algorithm. Our input consists of functions

whose zero-level sets are spheres of the same size and arranged in a

regular pattern in a cubic space. We consider two modes of evalua-

tion, either varying the grid resolution while xing the functions

(we use 4), or varying the number of functions (up to 18) while

xing the grid resolution. Figure 13 (a) shows the IA computed by

our algorithm for 18 functions in the highest resolution setting (on

a 100
3
grid). The statistics of tetrahedra containing 1, 2, or more

active functions for each evaluation mode is reported in Figure 13

(b,c). Observe that tetrahedra with only one active function are by

far the most common type, although the proportion of tetrahedra

with two active functions increases with the total number of func-

tions, due to more frequent intersections between the level sets.

Figure 13 (d,e) compare the running time of our algorithm, the label-

separating algorithm (mesh extraction only), and the two-step mesh

arrangement method in both evaluation modes. Observe that our

method (up to mesh extraction) maintains a consistent 1-2 times

slow-down relative to label-separation. Mesh arrangement is signif-

icantly slower, and it exhibits a non-linear growth as the number of

functions increases.

We further evaluate the performance of our ray-shooting algo-

rithm (Section 7.1) in identifying 3D regions bounded by multiple

surface components (shells). We consider functions whose zero-level

sets are either separate, non-intersecting spheres (Figure 14 left) or

concentric, nesting spheres (Figure 14 right). In the former case, the

outmost region is bounded by the same number of shells as the num-

ber of functions. In the latter case, each 3D region (except for the

innermost and outermost ones) is bounded by two shells. Observe

that replacing the ray-shooting algorithm by the straightforward

cell-grouping approach mentioned at the beginning of Section 7.1

incurs an overhead that is often a few times more than the rest of

the entire pipeline. The mesh arrangement approach uses a closest-

point-based heuristic for resolving nested 3D regions [Zhou et al.

2016]. Not only this heuristic requires rational representation of

coordinates to be robust, its running time grows much faster than

our ray-shooting algorithm as the number of bounding shells and

(particularly) depth of nesting increases.

To evaluate our MI algorithm, we use functions that are signed

distances to spheres of varying sizes and locations. The MI of such

functions is the weighted Voronoi diagram of the sphere centers,

where theweights are the sphere radii. Such diagrams, also known as

the Apollonius Diagrams, are useful for analysis of liquids [Voloshin
et al. 2002] and proteins [Will 1999], but few methods exist to com-

pute them in 3D [Wang et al. 2020]. Similarly to IA evaluation, we

either varied the grid resolution while xing the same number of

functions (4) or varied the number of functions (up to 18) on the

highest grid resolution (100
3
). Figure 15 shows an example MI with

18 functions, reports the statistics of the tetrahedra, and compares

the running times of our algorithm (mesh extraction only and full

pipeline) with the label-separating algorithm. Like our IA algorithm,

Fig. 14. Timing of our IA algorithm (using either topological ray-shooting or
cell-grouping for finding boundaries of 3D regions) and mesh arrangement
on increasing number of functions whose level sets are separate (le) or
nesting (right) spheres. All tests are performed on a 1003 grid.

Fig. 15. Performance evaluation for MI. (a): MI computed by our method
for 18 functions, which is the Apollonius Diagrams of 18 spheres, showing
the patches (with mesh edges in the zoom-in), the non-manifold curve
network,and exploded regions. (b,c): Number of tetrahedra containing 2, 3
or more active functions with the increase in either the grid resolution (using
4 functions) or the number of functions (at the highest grid resolution). (d,e):
Timing of our algorithm (mesh extraction only and full pipeline) and the
label-separating algorithm.

our MI algorithm (up to mesh extraction) maintains a consistent

slow-down of 2-3 times compared with label-separation in either

evaluation mode.

Finally, we show the break-down of our algorithms’ running time

into dierent stages in Figure 16. The information is obtained for

computing IA of 18 functions and MI of 18 functions, both on a 100
3
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grid. Observe that the use of look-up tables for tetrahedra with 2

(for IA) or 3 (for MI) active functions yields a signicant speed-up

at these settings, due to the larger proportion of such tetrahedra.

Active functions

Process tets

Complete network

Surface partition

Space partition

use look-up no look-upuse look-upno look-up

IA MI

Fig. 16. Breakdown of our IA (le) andMI (right) algorithms’ timing into the
main stages: identifying active functions within each tetrahedron (including
computing the signs at the grid vertices), processing each tetrahedron
(showing timing of both using and not using look-up tables for 2 functions
in IA or 3 functions in MI), connecting polygons into a complete surface
network, computing topological partitioning of the surface network, and
computing partitioning of the 3D space.

8.4 Visual comparisons
A key benet of computing IA or MI on piecewise-linearly inter-

polation functions is its ability to more faithfully reproduce ne

surface features, which are easily missed or distorted using tradi-

tional label-separating methods, as illustrated in 2D in Figures 2 and

3. Here we further demonstrate the benet in 3D.

Figure 17 shows the result of label-separation for computing IA

on a pair of slightly shifted spherical functions (similar to those

used in our robustness stress test, but with a larger shift distance of

ϵ =1e-3) and four intersecting spheres (taken from our performance

evaluation), both on a 100
3
grid. Due to the presence of close-by

surfaces, both results contain a large number of spurious topological

features, such as pockets of small 3D regions and duplicated chains

of non-manifold curves (see close-up for the second example).

Fig. 17. The IA computed using a label-separation algorithm for a pair of
shied spherical functions (top le andmiddle) and four intersecting spheres
(boom). Top right shows a zoomed in view of the complex non-manifold
structure in the second example.

Figure 18 left compares the MI produced by our algorithm and

label-separation on two shifted spherical functions and a constant

zero function. To make the case more challenging, we negate one

of the spherical functions, so that the true MI should include a thin

layer sandwiched between two hemispheres. While our algorithm

correctly produces such a result, label-separation once again pro-

duces numerous small pockets. Figure 18 right shows the Apollonius

Diagram of 4 spheres where one of the patches (blue) has a narrow

neck. In addition to creating jagged non-manifold curves, the label-

separating algorithm produces an incorrect combinatorial structure

wherein that patch is broken into two.

Ours

Label-separating

Fig. 18. Comparing MI computed by our algorithm (top) and label-
separation (boom) on a pair of shied and negatived spherical functions
(le) and four spherical distance functions (right).

8.5 More examples
We conclude this section with a few challenging and real-world

examples. As mentioned earlier, IA is commonly used for repre-

senting complex solid objects from simple primitives, notably via

CSG. Figure 19 shows our results on a set of implicit functions ob-

tained from the InverseCSG work of Du et al. [2018]. These are

low-degree polynomial functions (e.g., planes, spheres, cylinders,

and tori) that represent real-world CAD models. Our algorithm pro-

duce high-quality arrangements with many ne surface features,

and is signicantly faster than the alternative approach of com-

puting mesh arrangement on the extracted level sets (see statistics

inside the gure).

As a challenging and visually interesting example of MI, we used

our algorithm to compute the Voronoi diagram of a group of 3D

lines and circles. Computing such diagrams is an extremely challeng-

ing task due to their curved geometry and complex combinatorial

structures [Hemmer et al. 2010]. The input to our algorithm is a grid

of sampled distances to the given lines and circles. We showcase

several examples in Figure 20, including rotating lines (top), lines

that sweep along the Mobius strip (bottom left), and two groups of

Villarceau circles (bottom right). In addition, we compare our re-

sults with those produced by the label-separating algorithm, whose

results are both geometrically less smooth and topologically more

complex, as shown in the zoomed-in views and the noted numbers

of patches and non-manifold curves.

9 DISCUSSION
Wepresented algorithms for computing two commonly used implicit

surface networks, implicit arrangements (IA) and material interfaces

(MI), on a tetrahedral grid. To the best of our knowledge, they
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Model: 101

# patches: 476
# cells: 188

Ours: 1.88s
Mesh Arr.: 52.2s

Model: 112

# patches: 1543
# cells: 590

Ours: 3.25s
Mesh Arr.: 153.4s 

Model: 156

# patches: 658
# cells: 266

Ours: 2.32s
Mesh Arr.: 68.2s

Model: 167

# patches: 261
# cells: 114

Ours: 2.23s
Mesh Arr.: 23.7s 

Fig. 19. IA computed by our algorithm on implicit functions obtained from [Du et al. 2018] for representing CADmodels. Each example shows the non-manifold
curve networks, patches, and 3D regions (in exploded view). Complexity of each example, running time of our method (full pipeline) and mesh arrangement
are noted.

Ours

Label-
separating

616 curves
345 patches
3.54s

2032 curves
1389 patches
0.68s

Ours

Label-
separating

Ours

Label-
separating

698 curves
468 patches
0.40s

148 curves
112 patches
2.10s

282 curves
210 patches
0.42s

Ours

Label-
separating

18 curves
16 patches
0.81s

18 curves
16 patches
0.23s

386 curves
230 patches
2.22s

Fig. 20. Voronoi diagrams of 3D lines (top le: 5 rotating lines; top right: 20 rotating lines; boom le: 21 lines that sweep a Mobius strip) and circles (boom
right: 22 Villarceau circles on two tori) computed by our algorithm and the label-separating algorithm. The zoom-in views highlight regions on the non-manifold
curve networks where the two algorithms produce notably dierent geometry and/or topology. The combinatorial complexity of each surface network and the
running times (up to mesh extraction, before space decomposition) are noted.

are the rst that can robustly compute the correct combinatorial structure of either surface network for any number of piecewise
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linear functions. Our algorithms can reproduce ne surface features

much more faithfully than traditional, label-separating methods, at

the cost of a three- to four-fold increase in running time.

There are a number of venues for future work. Several stages in

our algorithm (e.g., “Active Functions” and “Process Tets” in Figure

16) process each tetrahedron independently, and hence they can be

easily parallelized to improve eciency. Additional speed-upmay be

possible by adopting successful strategies in polygonalizing implicit

surfaces, such as surface tracking. As with other grid-based methods,

our algorithms can produce many low-quality triangles (e.g., the

zoom-in views in Figures 13 (a) and 15 (a)) that will require further

processing [Dillard et al. 2007; Saye 2015]. Alternatively, we can

use the non-manifold curve network produced by our algorithms to

guide Delaunay-basedmethods to produce high-qualitymesheswith

an accurate combinatorial structure [Boltcheva et al. 2009; Dey et al.

2012]. In an orthogonal direction, and enabled by our algorithms,

we would like to explore grid-generation methods that result in

geometrically and topologically correct discretizations of IA or MI

for given implicit functions. Finally, while our algorithm is designed

for piecewise linear functions on simplicial grids (e.g., triangular

or tetrahedral), robust computation of IA or MI for higher-order

functions and/or on a non-simplicial grid (e.g., cubical) remains an

open and challenging problem.
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A CORRECTNESS OF TOPOLOGICAL RAY SHOOTING
We show that the algorithm presented in Section 7.1 correctly iden-

ties all shells bounding each 3D region partitioned by the surface

network. Denote the surface network as N , the tetrahedral grid as

M , the boundary and interior ofM respectively as ∂M and ΩM , the

ordering of vertices ofM as Φ, and the sink vertex as s . We assume

the choice of Φ meets the criteria set forth in Section 7.1.

Our proofs hold for any N ,M that meet the following assump-

tions:

• A1: N partitions ΩM into distinct 3D regions, so that each

polygon of N bounds two dierent regions.

• A2: ΩM is simply connected (i.e., a single component without

cavities or handles).

• A3: s is not on N .

• A4: N induces a convex decomposition within each tetrahe-

dron ofM .

Assumption A1 implies that each shell S of N is either closed

or open only at ∂M . By assumption A2, S must separate ΩM into

inside and outside regions, so that S is oriented towards the outside

regions. By denition of shells, each shell has exactly one outside

region but could have multiple inside regions (e.g., consider a shell

consisting of two oppositely positioned cones that meet at their tips

and oriented towards the outside of both cones).

Now consider a connected component C of N and the regions of

ΩM partitioned by C . Each region is the outside region of one of

the shells of C and is inside all the other shells. Furthermore, due

to assumption A3, exactly one of the shells of C has s in its outside

region. We call this shell the exterior shell of C , and the remaining

shells of C the interior shells.
The observations above lead to the following characterization of

regions of ΩM partitioned by the entire surface network N :

Lemma A.1. Let R be a region of ΩM partitioned by N , then:
(1) No two shells bounding R belong to the same connected compo-

nent of N .
(2) If R contains s , R is bounded by only exterior shells.
(3) If R does not contain s , R is bounded by exactly one interior

shell and zero or more exterior shells.

Proof. We prove each statement in turn.

(1) As observed above, the outside regions of two dierent shells

of the same connected component of N are distinct. On the

other hand, since R is outside each shell bounding R, the
intersection of the outside regions of all of R’s bounding

shells is non-empty, and hence no two bounding shells can

belong to the same connected component of N .

(2) Since R is outside each of its bounding shell, so is s . By def-

inition of exterior shells, each of R’s bounding shells is the

exterior shell of a connected component of N .

(3) We need to prove that s lies inside exactly one of R’s bounding
shell but outside the remaining shells. We rst show that s
must lie inside at least one shell. Consider a path that starts

from some point p inside R and ends at s . Since s is not in R,
the path must cross the boundary of R for an odd number of

times. Therefore it must cross at least one of the R’s bounding
shells for an odd number of times, implying that s lies in an

inside region of that shell. Next we show that it is not possible

for s to simultaneously be inside two of R’s bounding shells,
say S1, S2. Otherwise, the inside regions of S1, S2 must have a

non-empty intersection. Consequently, it is possible to travel

from the outside of S1 to its inside, passing through R and S2
but not S1 itself, which contradicts that the inside and outside

regions of S1 are separated by S1.
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�

We dene the extremal edge-point of a component C as the edge-

point with the lexicographically smallest ordering vector. Such edge-

points are where the rays start in our algorithm. The next statement

holds because of Assumption A4:

Lemma A.2. The extremal edge-point exists for each connected
component C of N and lies on the exterior shell of C .

Proof. To prove existence, we need to show that C must inter-

sect with some edges of M . We rst show that C cannot intersect

the interior of a tetrahedron t without intersecting its edges or faces.
Otherwise, C must be completely contained inside t , which makes

the continuous region surrounding C non-convex. This contradicts

with assumption A4. Similarly, we can show that C cannot inter-

sect a triangle face f without intersecting its edges. Otherwise, the

intersection of C with f consists of one or more connected compo-

nent that are disjoint from the edges of f , implying that the region

surrounding each component is non-convex. This again contradicts

with A4. Therefore C must intersect some edges ofM . Since such

intersections (i.e., edge-points) are nite in number, the extremal

edge-point must exist.

Let the extremal edge-point ofC bep with ordering vector {v,u, i}.
SinceM has no other sink vertices than s , there exists a path P of

grid edges the connect v and s via vertices with decreasing order

in Φ (P is empty if v = s). Since p’s ordering vector is smallest

(lexicographically) among all edge-points of C , no other edge-point

of C exists on P or on the segment of the grid edge between p
and v . This implies that s lies in the outside region of the shell

containing p and oriented towards v , which makes that shell the

exterior shell. �

We now prove the correctness of the algorithm:

Proposition A.3. After topological ray-shooting, each connected
component of the directed graphG (excluding the outer shell) consists
of all shells bounding a 3D region of ΩM partitioned by N .

Proof. By construction of the algorithm, the interior of each ray

does not intersect with N , and hence the starting shell and ending

shell (which can be the outer shell if the ray ends at s) of each ray

must bound a continuous region. That is, each edge in G connects

two shells that bound the same 3D region partitioned by N .

To complete the proof, we need to also show that, for each 3D

region R bounded by a set of shells SR (including the outer shell), the

subgraph of G spanning SR is connected. We consider two dierent

types of R below.

If R does not contain s , then by Lemma A.1, SR consists of one

interior shell and zero or more exterior shells. We only need to

consider the case that SR contains exterior shells. By Lemma A.2

and its argument within, the algorithm traces one ray from each

exterior shell into its outside, and since s < R the ray must end at

another (interior or exterior) shell of SR . Let S1, S2 be the pair of
starting and ending shells of a ray. By Lemma A.1, they must lie on

dierent connected components of N , which we denote as C1,C2.

By construction of the ray, the extremal edge-point ofC2 must have

a (lexicographically) smaller ordering vector than that of C1. As a

result, the subgraph ofG spanning SR cannot have cycles (i.e., it is a

directed acyclic graph, or a DAG). Since each connected component

of a DAG must have at least one node without outgoing edges, and

because the only such node in this subgraph is the (single) interior

shell, the subgraph must be connected.

If R contains s , then Lemma 3 ensures that SR consists of only

exterior shells plus the outer shell. Using the same arguments as

above, we can show that the subgraph of G spanning SR must be a

DAG, and the only node that does not have any outgoing edges is

the outer shell. Hence the subgraph is connected. �

ACM Trans. Graph., Vol. 41, No. 4, Article 41. Publication date: July 2022.


	Abstract
	1 Introduction
	2 Related works
	2.1 Discretizing material interfaces
	2.2 Discretizing implicit arrangements
	2.3 Exact predicates and representations

	3 Method overview
	4 Incremental construction
	4.1 Updating IA
	4.2 Updating MI
	4.3 Complexity analysis

	5 Exact computation
	5.1 Vertex encoding
	5.2 Barycentric predicates

	6 Look-up tables
	6.1 IA with 1 function or MI with 2 functions
	6.2 IA with 2 functions
	6.3 MI with 3 functions

	7 Space decomposition
	7.1 Topological ray shooting

	8 Results
	8.1 Robustness
	8.2 Performance of incremental construction
	8.3 Performance of complete algorithms
	8.4 Visual comparisons
	8.5 More examples

	9 Discussion
	Acknowledgments
	References
	A Correctness of topological ray shooting

