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Injective parameterizations of triangulated meshes are critical across ap-

plications but remain challenging to compute. Existing algorithms to find

injectivity either require initialization from an injective starting state, which

is currently only possible without positional constraints, or else can only

prevent triangle inversion, which is insufficient to ensure injectivity. Here

we present, to our knowledge, the first algorithm for recovering a globally

injective parameterization from an arbitrary non-injective initial mesh sub-

ject to stationary constraints. These initial meshes can be inverted, wound

about interior vertices and/or overlapping. Our algorithm in turn enables

globally injective mapping for meshes with arbitrary positional constraints.

Our key contribution is a new energy, called smooth excess area (SEA), that
measures non-injectivity in a map. This energy is well-defined across both

injective and non-injective maps and is smooth almost everywhere, making

it readily minimizable using standard gradient-based solvers starting from a

non-injective initial state. Importantly, we show that maps minimizing SEA

are guaranteed to be locally injective and almost globally injective, in the

sense that the overlapping area can be made arbitrarily small. Analyzing

SEA’s behavior over a new benchmark set designed to test injective mapping,

we find that optimizing SEA successfully recovers globally injective maps

for 85% of the benchmark and obtains locally injective maps for 90%. In

contrast, state-of-the-art methods for removing triangle inversion obtain

locally injective maps for less than 6% of the benchmark, and achieve global

injectivity (largely by chance as prior methods are not designed to recover

it) on less than 4%.
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1 INTRODUCTION
Mapping triangulated meshes onto the plane is a fundamental task

in computer graphics, geometry processing and physical modeling.

It is essential for many applications, such as UV parameterization,
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Fig. 1. Given a non-injective initial parameterization of a surface mesh
(left) with inverted triangles (red), boundary intersections (orange dots),
and overwound vertices (magenta dots), our method recovers a globally
injective map (right) while keeping the constraints (blue points) in place.
The inserts zoom in on one region in the initial map with many boundary
intersections and inverted triangles (green box) and another region with an
overwound vertex (cyan box).

2D deformation, simulation and inter-surface mapping, to name

just a few. A key property often required of these maps is to be

globally injective – meaning the map is one-to-one. Without global

injectivity, maps are often unusable in many of the aforementioned

applications (consider for example texture-mapping or packing).

In many cases it is also required that injectivity is upheld along

with user-given Dirichlet boundary conditions, that is, positional
constraints that designate 2D target positions for a subset of the

mesh vertices.

Many works focus on the weaker requirement of local injectivity,
which enforces injectivity only within the local neighborhood of an

interior mesh vertex or edge (see a comparison between global and

local injectivity in Figure 2). Towards this goal, a range of recent

methods [Aigerman and Lipman 2013; Du et al. 2020; Fu and Liu

2016; Kovalsky et al. 2015; Su et al. 2019; Weber et al. 2012] focus

on computing maps that are free of inverted triangles (and hence

are locally injective around each edge). These methods have been

successfully applied to fixed-boundary mapping problems, with

possibly additional constraints, since an inversion-free map is both

locally and globally injective if the boundary does not intersect

itself [Lipman 2014]. However, having no inverted triangle is far

from being sufficient to ensure an injective map, locally or globally,

when the boundary self-intersects. An intersecting boundary may
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give rise to overlap between triangles sharing a common vertex

(making the vertex overwound) and/or between non-adjacent tri-

angles. Predetermining a non-intersecting boundary that admits a

constraint-satisfying, injective map is often a computational crux

in the first place.

For free boundary problems, computing a globally injective map

remains a significant challenge. Harmonic maps into convex do-

mains (e.g. via Tutte’s embedding [Tutte 1963]) are the only tractable

class of maps known to be globally injective. For results beyond

Tutte, recent methods employ barrier-type strategies that evolve an

embedding from a given, globally injective starting configuration

(via Tutte or otherwise given) while preserving injectivity and mini-

mizing distortion [Jiang et al. 2017; Smith and Schaefer 2015; Su et al.

2020]. However, for arbitrary positional constraints, no such starting

configuration is generally available. An alternate strategy for these

methods then is to either add soft constraints (penalty energies)

[Jiang et al. 2017], or else to programmatically drag constrained

points from an initial, feasible embedding towards their final target

positions while continuously preserving injectivity [Schüller et al.

2013]. The former strategy has no guarantee of constraint satisfac-

tion, while the latter is often locked by choice of the path (and is

more generally an instance of the path planning problem).

Hence, existing algorithms for computing injective maps either

require initialization from an injective starting state, which is cur-

rently only possible without positional constraints, or else can only

prevent triangle inversion, which is insufficient to ensure injectivity.

Finding globally injective maps that satisfy positional constraints

thus requires a method to be able to recover from, or even pass

through, non-injective configurations on its way towards a con-

straint satisfying, injective solution.

We present, to our knowledge, the first method for recovering

globally injective parameterizations from arbitrary non-injective

initial meshes while meeting positional constraints. These initial

meshes can be inverted, wound about interior vertices, and/or over-

lapping (e.g., Figure 1 left). While our focus is on injectivity, the

resulting maps can then be used to bootstrap distortion minimizing

methods that require a feasible initialization.

Our core contribution is a new energy that reliably measures the

degree of non-injectivity in a mapping. Our energy builds on the

total lifted content (TLC) energy proposed in [Du et al. 2020], which

is a smooth variant of unsigned triangle areas. While TLC addresses

local injectivity within a fixed boundary, in order to tackle global
injectivity with arbitrary positional constraints, in this work we

introduce a new term whose subtraction from TLC captures the

areas of both overlapping and inverted triangles in a given map.

This energy, which we call the smooth excess area (SEA), is con-

tinuously defined for all maps - injective and non-injective alike -

and is smooth almost everywhere. This allows SEA to be trivially

minimized by off-the-shelf gradient-based optimization tools, initial-

izing from any given non-injective state while maintaining “hard”

positional constraints. As a key theoretical result that supports the

use of SEA in promoting injectivity, we show that maps that mini-

mize SEA are guaranteed to be locally injective and almost globally
injective, in the sense that the area of overlap between non-adjacent

triangles can be made arbitrarily small.

Since SEA is non-linear and non-convex, reaching a global mini-

mum cannot be guaranteed in practice. Also, our theoretical guar-

antee does not cover global injectivity. Nonetheless, we show that

our algorithm significantly outperforms state-of-the-art methods: it

achieves a 85% success rate in recovering globally injective maps

across a large benchmark set (one example is shown in Figure 1),

and a 90% success rate for local injectivity. In contrast, existing

methods for removing inverted triangles, which are not expected to

achieve either local or global injectivity, largely fail on this data set,

obtaining globally and locally injective maps on no more than 4%

and 6% of the examples.

2 RELATED WORK
Globally injective mapping of a triangulation to the plane is a classic

and long-studied problem in geometry processing [Floater and Hor-

mann 2005; Hormann et al. 2007]. Tutte’s embedding [Tutte 1963]

is the earliest and remains one of the few methods that guarantees
an injective map to a 2D domain. While extensions have been pro-

posed [Aigerman and Lipman 2015; Floater 2003; Gortler et al. 2006],

these maps remain limited to a small class of largely convex target

domains and cannot enforce interior constraints.

2.1 Inversion-free and locally-injective maps.
As a step towards injectivity, many recent methods focus on com-

puting non-inverting maps that preserve triangle orientation.

A broad class of barrier-type methods have been designed to

compute inversion-free maps. They require an inversion-free ini-

tialization (e.g. Tutte’s) and then proceed to optimize distortion

measures that either implicitly include [Fu et al. 2015; Hormann

and Greiner 2000; Smith and Schaefer 2015] or else are explicitly

augmented with [Liu et al. 2016; Schüller et al. 2013] barrier terms

that diverge as triangle areas collapse. As these energies are stiff, and

so challenging to minimize, a diverse range of customized methods

have been recently developed to optimize them [Claici et al. 2017;

Rabinovich et al. 2017; Shtengel et al. 2017; Zhu et al. 2018].

An alternate range of methods enable initialization from inverted

configurations and then optimize towards an orientation-preserving

map – possibly satisfying additional positional contraints. Algo-

rithmic strategies vary widely and include projection techniques

[Aigerman and Lipman 2013; Kovalsky et al. 2015; Su et al. 2019], de-

constructed domains [Weber and Zorin 2014], and nonconforming

meshes [Fu and Liu 2016]. Energies to promote non-inversion during

optimization have also been designed [Xu et al. 2011] and recently

improved to avoid degeneracies (i.e., triangles mapped to a line) [Du

et al. 2020]. Likewise, alternate approaches compute parameteriza-

tion via a sequence of bounded distortion maps (without setting any

positional constraints) [Liu et al. 2018], or apply subspace modeling

[Hefetz et al. 2019] to efficiently obtain inversion-free maps, albeit

with just a limited set of possible positional constraints.

In some cases, changing the topology of the starting triangulation

is acceptable. Here remeshing can then be applied to untangle and

avoid inversions [Agarwal et al. 2008; Shen et al. 2019], or to avoid

singularities during flow [Gu et al. 2018]. Similarly Weber et al.

[Weber and Zorin 2014] maps source and target domains to a convex

polygon and then remesh to obtain a one-to-one correspondence.
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Further afield, changing representation, e.g., to foliations [Campen

et al. 2016], enables computation of injective maps to some domains,

while quasiconformal maps [Weber et al. 2012] are promisingly

locally-injective – however this only holds in the smooth setting.

2.2 Globally injective maps.
As mentioned earlier, in general, non-inversion on its own is only

necessary but not sufficient to guarantee local injectivity, which in

turn is a weaker requirement than global injectivity. An inversion-

free map is only globally injective when it has a non-intersecting

boundary [Lipman 2014].

To compute globally injective maps, barrier-based methods for

2D parameterization have been further extended [Jiang et al. 2017;

Smith and Schaefer 2015; Su et al. 2020] by augmenting distortion

energies with additional terms that diverge when boundaries touch.

Optimization of these energies then continuously preserves injec-

tivity. These methods have been shown to be highly effective for

2D tasks, but they require an inversion- and overlap-free initial

embedding (again e.g. Tutte) to start optimization with, analogous

to their inversion-free counterparts. However, no such initializer is

readily available with positional constraints. While it can sometimes

be feasible to incrementally drag constrained points towards their

targets, finding such a path can be NP-hard or may not exist at

all. Alternately, physics-based, iterative collision-response methods

[Bridson et al. 2002; Harmon et al. 2008] have also been adapted

for injective deformation tasks [Brochu and Bridson 2009; Harmon

et al. 2011; Sacht et al. 2015]. However, these methods generally do

not resolve inversions, have no guarantees of convergence and, in

practice, often cannot and do not resolve all overlaps [Li et al. 2020].

In summary, when a traversed optimization path towards sat-

isfying positional boundary conditions can not be continued due

to nearly overlapping or nearly inverted states, all such methods

for finding global injectivity will halt and so fail. Here we propose

a first energy and algorithm that can pass through non-injective

intermediate states, as necessary, and so progress towards a final,

globally injective solution.

3 PRELIMINARIES
We consider a triangular mesh M as a 2-dimensional simplicial com-

plex whose faces are open balls in d-dimensions and are called

vertices (d = 0), edges (d = 1) and triangles (d = 2). We denote the

set of faces on the boundary of M as ∂M . Two triangles are said

to be edge-connected if they share a common edge, and an edge-
connected component is a maximal group of triangles where any pair

of triangles in the group are connected by a path of edge-connected

triangles. A mesh may consist of one or more edge-connected com-

ponents of triangles, and it may have one or more boundaries.

A simplicial map,Φ : M → R2, fromM to the plane is a continuous

map that is affine when restricted to each face of M . This map

is completely determined by the image of each vertex of M . For

convenience of discussion, and sinceM is typically given as input,

we will use Φ to denote both the map and the mapped image Φ(M).

Similarly, ∂Φ denotes both the map Φ restricted to the boundary

∂M and the image of this map Φ(∂M).

Fig. 2. Simplicial maps and their injectivity. Red triangles are inverted.

We say that a triangle in Φ is proper, degenerate or inverted if its

signed area is positive, zero or negative, respectively. The angle sum
of an interior vertex v in Φ is the sum of all signed angles at v in

its incident triangles. This sum is always a multiple of 2π . We call a

vertex overwound if its angle sum is greater than 2π (e.g., the gray

vertex on the right of Figure 2 (b)).

A map is globally injective, or simply injective, if two distinct

points in M are mapped to two different points in the plane. For

simplicial maps Φ, Lipman [Lipman 2014] showed that injectivity

amounts to asking that (1) the triangles in Φ are either all proper

or all inverted and (2) the boundary ∂Φ does not self-intersect. A

map is locally injective if, for any point in the interior of M , there

exists some local neighborhood of that point within which the map

is injective. A simplicial map Φ is locally injective if (1) the triangles

in Φ are either all proper or all inverted (so that Φ is injective near

each interior edge), and (2) Φ has no overwound vertices (so that Φ
is injective near each interior vertex).

We illustrate the difference between global and local injectivity

in Figure 2. The simplicial maps in (a,b) fail to be locally injective,

due to either the presence of a mixture of proper and inverted

triangles (a) or an overwound interior vertex (b). The maps in (c,d)

are locally injective, but they are not globally injective due to the

self-intersection of the boundary. Finally, the map in (e) is both

locally and globally injective, even though all triangles are inverted.

In general, a desirable map should be both injective and free of

inverted triangles (or inversion-free).

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:4 • Du, X. et al

4 PROBLEM AND OVERVIEW
Our goal is to parameterize a triangular mesh to the plane in a

globally injective manner while adhering to user-prescribed posi-

tional constraints. In addition, we seek parameterizations where all

triangles are not inverted (e.g., we wish to avoid injective maps like

Figure 2 (e)). Specifically, our input consists of a triangular mesh

M , a subset S of the vertices of M that are labelled as constrained,
and a set of target locationsT in the plane, one for each constrained

vertex. We wish to find a globally injective, inversion-free simplicial
map Φ : M → R2 such that Φ(S) = T .

A feasible solution for a given input {M, S,T } may not exist. For

example, the constraint set S may require that three vertices of

a triangle are mapped so that the triangle inverts its orientation.

An ideal parameterization algorithm would produce a feasible map

whenever such map exists and report failure otherwise.

We start with initial maps that only satisfy positional constraints.

These maps may be given by application (e.g., deformed) or can

be directly computed via one of the numerous constraint-based pa-

rameterization methods. Our method optimizes our tailored energy,

E(Φ), starting from a non-injective initial map, to seek an injective

and inversion-free map while keeping the constraints unchanged.

Next we introduce the energy E and discuss its properties in Section

5, and then we present our optimization algorithm in Section 6.

5 ENERGY
We introduce an energy that measures the extent to which a simpli-

cial map is not globally injective. In contrast to prior measures, our

energy accounts for global injectivity (and not only inverted trian-

gles) and is well-behaved (i.e., continuous and almost everywhere

smooth) across all injective and non-injective maps.

The key idea behind our energy is to minimize the area of over-

lap between triangles, in addition to the area of inverted triangles.

We first introduce the excess area measure, which captures both

the overlapping and inverted triangle areas in a computationally

efficient manner (Section 5.1). This measure is not smooth, and

we show there exist certain degenerate configurations from which

gradient-based optimization methods cannot recover. We analyze

these conditions and introduce a smoother variant as our energy,

called smooth excess area (SEA), which bounds the excess area from

above, hence upholding smoothness properties as well as injectivity

guarantees (Section 5.2).

5.1 Excess area
A necessary condition of global injectivity is that the triangles do

not overlap in their interior. As a result, the overlapping area be-

tween triangles is a proxy of the degree of non-injectivity. While

we can explicitly compute this overlapping area by considering all

pairs of triangles, the computational cost could be prohibitive for

larger meshes. Furthermore, the pair-wise overlap does not capture

a complete inversion of the mesh. We instead build an efficient-to-

compute measure that simultaneously captures both overlap and

inversion.

Consider a closed, oriented, and possibly self-intersecting curveC
in the plane. We define the occupancy of the curve, denoted byO(C),
as the total area of the plane where the winding number is positive.

Fig. 3. Winding numbers for different curves. Occupancy of each curve is
the area of the gray regions.

The winding number of C around a point is the integer number of

times that C travels around that point. If C is not self-intersecting

and has a counter-clockwise orientation, the winding number is 0

everywhere outside the curve and 1 inside the curve. Otherwise, the

winding number can assume other integer values, and each region

of the plane partitioned by the curve has the same winding number.

Figure 3 shows examples of curves, winding numbers, and regions

contributing to occupancy (colored gray).

We define the excess area of a simplicial map Φ as the difference

between the total unsigned area of all triangles of Φ, denoted by

A(Φ), and the occupancy of the boundary curve ∂Φ:

Aexcess (Φ) = A(Φ) −O(∂Φ) (1)

As the next proposition shows, the excess area Aexcess (Φ) is
closely related to both the overlapping area among triangles and

the area of the inverted triangles. We denote by Aover lap (Φ) the
total unsigned area A(Φ) minus the area of the plane covered by Φ,
and Ainver t (Φ) the total unsigned area of inverted triangles in Φ.
We prove in Appendix A that:

Proposition 5.1. For any simplicial map Φ of a triangular mesh,
(1) Aexcess (Φ) ≥ Aover lap (Φ).
(2) Aexcess (Φ) ≥ Ainver t (Φ).
(3) Aexcess (Φ) ≤ Aover lap (Φ) +Ainver t (Φ).

An immediate corollary of these inequalities is that the excess

area is zero if and only if the mesh has neither overlapping nor

inverted triangles. This property, together with the inequalities,

makes the excess area a promising energy for promoting injectivity.

As to the computational cost, the most expensive part of com-

puting the occupancy is computing the partitioned regions (known

as the arrangement) of a polygon. For a polygon with n edges, the

structure of the arrangement has complexity O(n2) in the worst

case, and so is the computational time. With a more sophisticated

algorithm [Chazelle and Edelsbrunner 1992], this complexity can

be further reduced to O(n logn + k), where k is the number of edge

intersections. Since the number of boundary edges of a mesh is

typically much smaller than the number of triangles, the excess
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Fig. 4. Top: a non-injective map with overlapping area (yellow) around a
boundary vertex (green) transitions to an injective map, going through a
configuration where two incident boundary edges overlap (middle). Bottom:
the same transition but the straight edges are replaced with their arc-edges;
note that the arcs do not overlap during the process.

area can be computed more efficiently than computing all pairwise

intersections between triangles.

5.2 Smooth Excess Area
The main drawback of the excess area as an energy to optimize

is its lack of smoothness. First, as covered by Du et al. [2020], the

unsigned areaA(Φ) is onlyC0
whenΦ contains a degenerate triangle.

Second, as we show in Appendix B, while the boundary occupancy

O(∂Φ) is continuous for all simplicial maps, it is only C0
when

the boundary map ∂Φ is singular; that is, when two segments of

∂Φ with non-zero length completely overlap. Although these non-

smooth configurations are geometrically degenerate (e.g., three

or more points are collinear), during optimization they generally

cannot be avoided when maps transition from a non-injective state

to an injective state. For example, flipping the orientation of an

inverted triangle requires passing through a degenerate state of that

triangle. Likewise, resolving overlapping triangles at a boundary

vertex necessarily overlaps its two incident boundary edges (and

so makes the map singular) during the process (Figure 4 top). In

fact, our preliminary attempts at directly optimizing the excess area

lead to frequent locking at precisely such degenerate, unavoidable

configurations (see Figure 11).

To address these limitations, we construct our energy as a smoother

variant that provides an upper bound to the excess area. While our

energy is still C0
in certain degeneracies, these configurations are

even more degenerate than theC0
configurations of excess area and

easier to avoid during transitions from non-injectivity to injectiv-

ity. In our experiments, we found that optimization of our energy

seldom gets stuck due to its non-smoothness.

Our energy replaces each term of excess area,A(Φ) andO(∂Φ), by
a smooth(er) variant. First, the unsigned area A(Φ) is replaced with

the total lifted content (TLC), introduced for these purposes by Du et

al. [2020]. TLC computes the sum of the unsigned area of all triangles

after lifting each triangle to a 4-dimensional space. Specifically,

consider a triangle t ∈ Φ whose vertex coordinates are {xi ,yi }

Fig. 5. An arc-edge (left) and two overlapping arc-edges (right).

for i = 1, 2, 3. Given a positive constant α and a non-degenerate

auxiliary triangle t̃ with vertex coordinates {x̃i , ỹi } for i = 1, 2, 3,

both of which are specified by the user, the vertex coordinates of

the 4D lifted triangle t̂ is constructed as {xi ,yi ,
√
αx̃i ,

√
αỹi }. Here,

α moderates the contribution from the auxiliary triangle, so that the

area of the lifted triangle approaches that of the original triangle

as α → 0. Following the TLC framework, we chose the equilateral

triangle with a unit area as the auxiliary triangle t̃ for every t ∈ Φ.
We denote the TLC of Φ for a given α as Aα (Φ). As shown in [Du

et al. 2020], for any positive α , Aα (Φ) is differentiable to any order

for all simplicial maps Φ – including those with degenerate triangles.

Next, we improve the smoothness of the occupancy O(∂Φ). To
avoid non-smooth states like that in Figure 4 (top), we compute the

occupancy of a modified boundary curve. In this new curve, straight

edges of ∂Φ are replaced with curved segments so that they are less

likely to overlap with each other. Specifically, for each oriented edge

e ∈ ∂Φ, we consider the circular arc with e as its chord and whose

center angle is some constant θ > 0. The arc, denoted by Γθ (e), is
located on the right side of e and shares the same orientation as

e . See Figure 5 (left) for illustration. We call Γθ (e) the arc-edge of e
and the curve consisting of all arc-edges the arc-boundary of ∂Φ,
denoted by Γθ (∂Φ).

It can be verified that, for two arc-edges to overlap (Figure 5 right),

all of the following conditions have to hold for their straight edges

e1, e2: (1) ∥e1∥ = ∥e2∥ (so that their arc-edges have the same radius);

(2) the end points of e1, e2 are co-circular and the radius of the circle
is ∥e1∥ arcsin(θ/2); (3) the center of this common circle lies on the

left of both e1 and e2; and (4) The intersection of the interior of e1, e2
is not empty. If we fix e1, these conditions leave only one degree

of freedom for e2 so that their arc-edges overlap. In contrast, the

straight edge e2 has two degrees of freedom to stay overlapped with

e1. So the overlapping of arc-edges is less likely than the overlapping
of straight edges. Importantly, if e1, e2 share a common boundary

vertex, the four conditions cannot hold simultaneously, and hence

their arc-edges never overlap. As a result, the arc-boundary never

becomes singular during the common transition depicted at the top

of Figure 4, as shown at the bottom of the figure.

We define the arc-occupancy of the boundary ∂Φ as the occupancy

of the arc-boundary Γθ (∂Φ) minus the additional areas introduced

by the arcs. We call the region bounded by each edge e and its arc-

edge a “flap” (see Figure 5 left). Let Bθ (∂Φ) be the sum of all flap

areas. The arc-occupancy, Oθ (∂Φ), is then

Oθ (∂Φ) = O(Γθ (∂Φ)) − Bθ (∂Φ). (2)
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As shown in Proposition B.2 in Appendix B, the occupancy of a

curve undergoing a piecewise smooth deformation isC1
continuous

except where the curve is singular. Also, since each flap area is

proportional to the square of the corresponding edge length, which

is a smooth function of ∂Φ, so is Bθ (∂Φ). We conclude that the arc-

occupancy is a C1
continuous function of ∂Φ except when two arcs

of the arc-boundary Γθ (∂Φ) overlap.
Finally, our full energy is constructed by replacing the unsigned

area and occupancy in the excess area (Equation 1) by TLC and

arc-occupancy, respectively:

Eα ,θ (Φ) = Aα (Φ) −Oθ (∂Φ). (3)

We refer to this energy as smooth excess area (or SEA). SEA is C1

continuous for all simplicial maps Φ whenever ∂Φ has no overlap-

ping arc-edges. In the special case where the entire boundary ∂Φ is

constrained, minimizing Eα ,θ (Φ) is then equivalent to minimizing

Aα (Φ), as the arc-occupancy is a constant. In this sense, SEA is an

extension of TLC to free-boundary mapping.

It remains to show that SEA, just like excess area, promotes in-

jectivity. We will establish several theoretical results in this regard

with corresponding experimental evidence in Section 7. We first

show that SEA is an upper bound of excess area, which in turn is an

upper bound of both the overlapping and inverted triangle areas (by

Proposition 5.1). Furthermore, SEA is zero when the map is globally

injective, α = 0, and θ is sufficiently small. More precisely (see proof

in Appendix C):

Proposition 5.2. For any simplicial map Φ of a triangular mesh,
Eα ,θ (Φ) ≥ Aexcess (Φ) for all α ≥ 0, θ > 0. Furthermore, if Φ is
globally injective and inversion-free, there exists some θ0 > 0 such
that E

0,θ (Φ) = 0 for all θ < θ0.

The statement above shows that the SEA energy generally pro-

motes injectivity. As our main result, we offer a more precise char-

acterization of injectivity at the global minima of the energy. The
following proposition shows that, if a globally-injective map exists

for the given input, any map Φ achieving the global minimum of

the energy is guaranteed to be not only locally injective but also
arbitrarily close to being globally injective in the following sense:

the total amount of overlap between triangles, if there is any, can be

made arbitrarily small by choosing sufficiently small α and θ (see

proof in Appendix D):

Proposition 5.3. Let Φ0 be an injective, inversion-free simplicial
map of a triangular meshM , and S a subset of vertices ofM such that
S includes at least two vertices from each edge-connected component
of triangles ofM . For any λ > 0, there exists some α0 > 0 and θ0 > 0

such that for any α ∈ (0,α0) and θ ∈ (0, θ0), Eα ,θ (Φ0) < Eα ,θ (Φ) for
any simplicial map Φ that satisfies Φ(S) = Φ0(S) but is not locally
injective, or not inversion-free, or Aover lap (Φ) > λ.

This result extends the local-injectivity guarantee given in [Du

et al. 2020] for TLC, which is limited to fixed-boundary mapping, to

the more general setting of arbitrary positional constraints and addi-

tionally offers bounds on the overlap area. Similar to the injectivity

guarantee for TLC, the above guarantee for SEA considers only

the global minima and may require impractically small parameter

values (α and θ ). Nevertheless, as our experimental results will show,

SEA is generally effective in promoting injectivity in practice.

We make one final remark on the shape of the map promoted by

SEA. [Du et al. 2020] shows that, asα approaches 0, a locally injective

map Φ that minimizes TLC tends to also minimize a conformal

distortion measure, namely the sum of the Dirichlet energy of the

linear transformation from each triangle t ∈ Φ to its auxiliary

triangle t̃ . It is easy to see that the same property holds for globally

injective maps that minimize SEA. In particular, Proposition 5.2

shows that E
0,θ (Φ) = 0 for all globally injective Φ and sufficiently

small θ . Hence the map that achieves the minimal SEA as α increases

from zero minimizes the partial derivative, ∂Eα ,θ /∂α at α = 0.

The derivative is the same as ∂Aα /∂α , which was shown in [Du

et al. 2020] to be the conformal measure mentioned above. As our

auxiliary triangles are equilateral, as in [Du et al. 2020], SEA has

the tendency to promote equilateral triangles.

6 ALGORITHM
The SEA energy is C1

continuous almost everywhere, and as a

result it can be optimized using standard gradient-based methods.

We adopt the quasi-Newton (QN) method employing the standard

limited-memory BFGS solver [Wright and Nocedal 1999].

Despite our theoretical guarantees, descent-based solvers like QN

have no guarantee of reaching a global minima of SEA, as the energy

is non-convex. Furthermore, an applied choice of SEA parameters

(α and θ ) can be larger than that required by our guarantee. As our

objective is to find an injective map, we stop our QN solver when

either (1) a globally injective and inversion-freemapΦ is found, or (2)

the optimization converges, or (3) a maximum number of iterations

is reached (when not otherwise specified we use 10,000). To check

for (1), we adopt the criteria given in [Lipman 2014], namely that Φ
contains no degenerate or inverted triangles and the boundary ∂Φ
is free of intersections.

Optimization requires evaluation of the SEA energy Eα ,θ (Φ) as
well as its gradient in Φ. The energy is the sum of three terms, the

TLC energy Aα (Φ), the total flap area Bθ (∂Φ), and the (negative)

occupancy of the arc-boundary −O(Γθ (∂Φ)). The formula for TLC

and its gradient can be found in [Du et al. 2020], while the flap area

has a simple expression as a summation over all boundary edges

e ∈ ∂Φ,

Bθ (∂Φ) =
∑
e ∈∂Φ

∥e∥2(θ − sinθ )

4(1 − cosθ )
.

To compute the occupancy of the arc-boundary Γθ (∂Φ), we com-

pute its arrangement and the winding number of each region in

the arrangement. The occupancy is the sum of area of all regions

with a positive winding number. To compute the arrangement, we

first perform pairwise intersections of all arc-edges on Γθ (∂Φ). As
mentioned earlier, the quadratic complexity of this step can be made

output-sensitive using a more sophisticated algorithm [Chazelle

and Edelsbrunner 1992]. The intersections break Γθ (∂Φ) into closed

loops of arc segments. If the mesh has multiple boundaries, some

region of the arrangement may be surrounded by multiple arc loops.

We identify loops that bound the same region based on the contain-

ment relation between each pair of loops. Given two loops, their

containment relation is obtained by computing the winding number
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of one loop around a point on the other loop. Finally, the wind-

ing number of each region with respect to Γθ (∂Φ) is obtained by

propagating from the exterior region (whose winding number is

zero) to adjacent regions while incrementing or decrementing by 1

depending on the orientation of the arcs on the common boundary

between the regions.

The area of a region bounded by a loop of arcs can be computed

as the sum of the area of the polygon formed by the arcs’ chords

and the areas of the flaps bounded by each pair of arc and its chord.

Specifically, denote the region as R and the sequence of arcs bound-

ing the region as {a1, . . . ,an }. Note that each arc is either a complete

arc-edge of Γθ (∂Φ) or a portion of it (due to intersection with other

arc-edges). We ignore the orientation of the arc-edge that each ai
lies on and assign ai a new orientation so that R is on its left. Let

ci be the chord of the arc ai , and assign it the same orientation as

ai . See Figure 6 (a) for an illustration. The area of R is the signed
area of the polygon {c1, . . . , cn } (Figure 6 (b)) plus the sum of the

signed areas bounded by each arc ai and its chord ci in the reverse
orientation (Figure 6 (c)). Both signed areas can be expressed as

functions of the end points of the arcs, each of which in turn either

is a vertex of ∂Φ or, if it is the intersection of two arc-edges, can

be expressed as a function of the four vertices of ∂Φ defining those

arc-edges. The gradient of R’s area with respect to vertices of ∂Φ
can then be derived using the chain rule.

Fig. 6. The area of a region bounded by arcs (a) is the sum of the signed
area of the oriented chords (b) and the signed areas bounded by each pair
of oriented arc and its chord in reverse orientation (c). Positive and negative
areas in (b,c) are colored green and red.

7 RESULTS
We evaluate our method on a benchmark test set of real-world

examples and then analyze its behavior in detail on a set of challeng-

ing, hand-crafted, stress-test cases. Our implementation currently

employs an off-the-shelf, limited-memory BFGS quasi-Newton im-

plementation (NLOpt [Johnson [n.d.]]) for energy optimization, with

energy and gradient evaluation and assembly implemented in C++.

We use Eigen formatrix operations andOpenMP for parallelizing the

pairwise intersection of arc-edges (for computing arc-occupancy),

which is the most time-consuming step in our method.

Our SEA energy is parameterized with two terms: α for defining

TLC and the center angle θ of the arc-edges. As expected we gen-

erally see that smaller values of α are more successful in reaching

injectivity, with the concurrent cost of slower convergence for stiffer

energy. This is consistent with the behavior for α in TLC [Du et al.

2020]. Similarly, we find that while larger θ (and hence more “bulgy”

arc-edges) enable easier optimization steps, this must be balanced

against the improving likelihood of reaching injectivity with smaller

θ . To set parameters for the evaluation, we first apply a parameter

sweep across a set of 50 test examples. All tuning examples are

created via the same method we employ to create the benchmark

itself – see Section 7.1 below. Of these 50 tuning examples, 7 are

then re-used as part of our final 1791 example benchmark. We find

best success obtained with θ = 0.1 and α set to 10
−4

the average of

unsigned triangle area in the given initial map (assuming that each

auxiliary triangle in TLC is an equilateral triangle of unit area). We

use these settings in all of the following experiments.

In all subsequent figures, constrained vertices are colored blue,

intersection points between boundary edges are colored orange,

overwound vertices are coloredmagenta, and degenerate or inverted

triangles are colored red. Recall that a locally injective map has

no degenerate or inverted triangles or overwound vertices, and

global injectivity further requires that the boundary has no self-

intersection. Please see the accompanying video for animations

showing optimization sequences for many of these examples.

7.1 Benchmark
We create a benchmark of 1791 examples for evaluating free-boundary

injective mapping with positional constraints. Each example in our

benchmark includes a non-injective initial map and a set of con-

strained vertices. For all examples we ensure that a globally injective

map satisfying imposed constraints always exists. Our examples

are randomly sampled from Du et al.’s [2020] dataset, which in turn

is derived from [Liu et al. 2018]. The dataset consists of over ten

thousand 3D surface meshes, each associated with a globally injec-

tive map to the plane. For each sampled meshM and its associated

map Φ, we randomly pick up to 20 vertices ofM as the constraint

set S , and set their target locations as T = Φ(S). This ensures that
a constraint-satisfying, globally injective map exists (i.e., Φ). Next,
we ignore Φ and compute a new map Φ′

fromM to the plane using

ARAP [Igarashi et al. 2005] while satisfying the same constraints

(i.e., Φ′(S) = T ). If Φ′
is not injective, it is included in our benchmark

as an initial map. This process is illustrated in Figure 7. Observe

that the ARAP map Φ′
, as in (c), can differ significantly from the

globally injective map Φ that comes with the mesh, as in (b).

(a) (b) (c)

Fig. 7. Benchmark creation process: starting from an open surface mesh
M (a) with a globally injective map Φ to the plane (b) from the [Du et al.
2020] dataset, we randomly select vertices in Φ to be constraints (blue dots
in (b)) and compute a new map Φ′ from M using ARAP that meets those
constraints (c). If (as here) the resulting map Φ′ is not injective it is added
to our benchmark.
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Initial map SEA LBD SA

Fig. 8. Three successful examples from the benchmark: initial maps (first column), maps produced by our method (second column), which are all globally
injective, and maps produced by LBD (third column) and SA (last column), none of which are locally or globally injective.

Table 1 reports the success rate of our SEA-based method on the

benchmark. For each example, our method is successful in achieving

global injectivity if the algorithm terminates with a globally injective

map, and successful in achieving local injectivity if a locally injective

map is found at any iteration before the algorithm terminates. We

observe that our algorithm achieves global injectivity for a large

majority of all examples (85%). We also see that the QN solver

reaches our pre-set, maximum number of iterations (10,000) for the

vast majority of examples where global injectivity is not achieved,

indicating that the optimization is converging too slowly. After

running for an additional 10,000 iterations on these failure cases,

we see that the success rate improves slightly to 88%.

We also consider, see Table 1, the behavior of both the SA [Fu and

Liu 2016] and LBD [Kovalsky et al. 2015] methods on our benchmark.

Both methods seek to compute inversion-free mappings. For each

we use the code provided by their respective authors with default

settings. Here, the SA code requires a 2D injective “rest” mesh. In

our tests we provide a Tutte embedding of the 3D surface mesh. The

LBD code requires setting an upper bound, K , on distortion. We (in

consultation with the LBD authors) set K to twice the maximum

distortion between the 3D surface mesh and the known injective

map. This ensures that a feasible solution with respect to the bound

exists. We see that, across examples in the benchmark, SA and

LBD successfully achieve inversion-free mappings on just a small

fraction, respectively 9.9% and 13.5%, of the benchmark examples.

Table 1. Statistics on number of benchmark examples (out of 1791) that
each method succeeds in achieving respectively (per row) an inversion-free,
locally injective, or globally injective map.

SEA (Our method) SA LBD

Inversion free 1629 (91.0%) 179 (9.9%) 243 (13.5%)

Local injectivity 1618 (90.3%) 65 (3.6%) 108 (6.0%)

Global injectivity 1537 (85.8%) 56 (3.1%) 20 (1.1%)

They are only able to achieve locally injective mappings on an even

smaller proportion of examples, respectively 3.6% and 6%. This is in

contrast to SEA’s 90% success rate for local injectivity. Finally, both

SA and LBD achieve global injectivity (largely by chance as they

are not designed to find it) on an even smaller set of examples.

To more closely examine the behavior of these methods, we first

take a closer look at some of the specific benchmark example results.

Figure 8 demonstrates several representative examples where our

optimization of SEA succeeds in recovering global injectivity. Here

we observe that initial maps often contain large areas of overlaps,

complex and highly wound boundaries, and many inverted triangles.

For the same examples, SA and LBD do not achieve locally injective

maps.

Figure 9 then demonstrates two representative failure cases for

our method. We observe that the majority of failures with boundary
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Initial map SEA

Fig. 9. Two failure examples from the benchmark: initial maps (first column)
and non-globally-injective maps produced by our method (second column).

intersections in our results are caused by a “crossing-arm” config-

uration, as highlighted by the green boxes, where one part of the

shape crosses over another part. In the following section we ana-

lyze this mode further (see Figure 15). Likewise, some optimization

results can terminate with extremely skinny, inverted triangles, as

highlighted by the cyan boxes, which is another source of slowed

or stalled convergence.

Figure 10 (a) visualizes the runtime of our method on our bench-

mark examples as a scattered plot. These statistics are collected on

a Intel Core i9 CPU at 3.7GHz with 64 GB memory. We see that the

majority of successful examples finish within one or two minutes,

with the remaining taking up to ten or twenty minutes. Likewise,

failure examples (gray dots) are, of course, most time consuming as

they utilize the full maximum number of allowed iterations. Run-

ning time for examples increases both with the size of the mesh (the

horizontal axis) and the number of solver iterations (the coloring of

dots). We take a closer look at the slowest successful example in the

entire benchmark in (c,d), which corresponds to the large red dot

in (a). This mesh has 31,444 vertices, and optimization took 8,852

iterations and 893 seconds to obtain an injective map.

A significant part of our computation is spent in obtaining the

arrangement of the arc-boundary. Due to performing pair-wise in-

tersections between arc-edges, arrangement computation time is

quadratic to the number of boundary vertices. We note that this

certainly could be significantly optimized in future implementations.

The remainder of the algorithm, such as evaluating TLC and per-

forming a QN solve, runs in time roughly linear to the total number

of vertices. This analysis is confirmed in the plot of Figure 10 (b),

which shows a linear correlation between two ratios - the ratio of

the two components of running time (arrangement versus the rest),

0 # iters 10,000

(a)

(b)

(c)

(d)

Fig. 10. Performance: (a) log running time in seconds (vertical axis) versus
vertex count (horizontal) for all benchmark examples. Each dot represents
one mesh and is colored by number of QN iterations (gray dots are fails). (b)
Ratio of arrangement computation time over the remaining time (vertical
axis) versus ratio of squared number of boundary vertices over total number
of vertices (horizontal axis) for all successful examples. (c,d) The initial and
optimized maps in our slowest successful example (largest red dot in (a)).

and the ratio of the squared number of boundary vertices over the

number of all vertices. Observe that, for meshes where the second

ratio is less than 50, which are most examples in the benchmark,

arrangement computation usually takes no longer than the rest of

the algorithm.

7.2 SEA optimization behavior
Next we further illustrate and analyze the behavior of our method

on a set of hand-crafted, small-scale stress-test examples. To bet-

ter study the energy and convergence behavior of our solver, and

solely for these following examples, we continue to run our QN

solver (even after it reaches a globally injective map) until either the

solver stagnates or else a maximum number of iterations (10,000) is

reached.

A key design choice that we made for our SEA energy is to re-

place the occupancy of the boundary, O(∂Φ), by the smoother arc-

occupancy measure,Oθ (∂Φ). In Figure 11 we compare results of our

SEA energy with one that uses occupancy instead of arc-occupancy;

i.e., Oθ (∂Φ) in Equation 3 is replaced by O(∂Φ). For this example

we set two constraints and the initial map in (b) has two inverted

triangles. When using occupancy rather than arc-occupancy, the

solver stops at 59 iterations with a line-search error (insufficient

decrease) in the solver – indicative of encountering a sharp energy

transition. Correspondingly we confirm that indeed, at this itera-

tion, two adjacent boundary edges nearly overlap (highlighted by

the green oval in (c)), which means that the solver is close to a C0

transition of the occupancy energy. At this point the resulting map,

shown in (c), is not yet globally injective due to a boundary intersec-

tion. In contrast, optimization with SEA using arc-occupancy is able

to continue until the energy converges to a globally injective map
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(a) M (b) Initial map (c) SEA w occupancy

(d) SEA w arc-occupancy

SEA w occupancy
SEA w arc-occupancy

(e) Energy plot

Fig. 11. (a): A mesh with two constraint vertices. (b): An initial map contain-
ing inverted triangles. (c,d): Results of optimizing for SEA with occupancy vs.
with arc-occupancy. (e): Energy plot of the two energy during optimization.

iter #0 iter #1 iter #5

iter #730 iter #100 iter #10

Fig. 12. Intermediate results of optimizing SEA energy for the example in
Figure 11 at θ = 1.0. Arc-edges are colored green. The energy converges at
iteration 763 and produces the same map as in Figure 11 (d).

(see (d)). Again, observe that triangles are close to equilateral when

SEA converges, due to our use of equilateral auxiliary triangles.

In Figure 12 we visualize iterations of the SEA optimization pro-

cess for the same example. Here, with our default parameter setting

of θ = 0.1, the arc-edges would appear very close to the straight

edges. For a better visualization, in Figure 12 we set θ = 1.0 so that

the arc-edges are easier to see. Even at this large θ , SEA converges

to the same globally injective map as θ = 0.1 (Figure 11 (d)), but

at a slower rate (requiring 763 iterations instead of 259 iterations

at θ = 0.1). Observe that the map becomes globally injective very

quickly (around 10 iterations), and the energy continues to reduce

during the remainder of the iterations. The optimization processes

for both θ values (0.1, 1.0) can be found in the accompanying video.

Initial map

SEA

Initial map

SEA(29 iter.) (200 iter.)

Fig. 13. Two initial maps with overwound vertices (top) and the injective
maps produced by our method (bottom).

We next consider the two examples in Figure 13, where the initial

maps have intersecting boundaries but no inverted triangles. In both

maps, one of the constrained vertices is also overwound with an

angle sum of respectively 4π (top) and 6π (bottom). Our method is

able to achieve global injectivity in both cases. Note that methods

that seek only non-inverted triangles would not correct the input

in these examples.

Figure 14 shows two stress-test examples that are even more chal-

lenging for recovering injectivity. We create each example by taking

an injective (rest) map and dragging a few constraint vertices to

faraway target locations. Note that the mesh in the second example

has two boundaries. Our method succeeds in recovering global injec-

tivity from both non-injective initial maps. While methods like SA

[Fu and Liu 2016] and LBD [Kovalsky et al. 2015] can remove (most)

triangle inversion in these examples, they leave behind other types

of non-injectivity such as boundary intersections and overwound

vertices.

As discussed in the last section, our optimization of the SEA

energy may converge very slowly or even stall for certain geometric

configurations. One such configuration, which we find represents

the majority of our failure cases in our benchmark (e.g., Figure 9), is

the “crossing-arm” case illustrated in Figure 15. In each of the three

examples (a,b,c), one arm of the shape crosses over the other arm in

the initial map (top). As the extent of crossing increases from the

first example to the last, the convergence of the SEA energy slows,

until the solver reaches 10,000 iterations without converging or

producing a globally injective map. For the last example (c), we let

the solver continue to run and found it converging at nearly 70,000

iterations with a non-injective map (see the accompanying video

for the optimization processes). This behavior can be explained by

recalling that SEA penalizes the area of overlapping triangles, which

in these examples are where the two arms cross. However, shrinking

the crossing region (e.g., in (c)) creates a bottleneck that prevents

the arms from making larger moves that are necessary for reaching

global injectivity.

7.3 Impact of initialization
As our energy is non-convex, the behavior of a descent-based solver

like QN may vary significantly for different initial configurations.

As expected, our method is generally more successful in reaching
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M IniƟal map SEA LBD SA

Fig. 14. From left to right: input meshes (with one or two boundaries), non-injective initial maps, globally injective maps produced by our method (SEA), and
results of LBD and SA. Both LBD and SA have removed most or all inverted triangles, but the results are neither locally or globally injective due to overwound
vertices and boundary intersections.

550 iter. 5709 iter. 69576 iter.

(a) (b) (c)

Fig. 15. The “crossing-arm” configuration: initial maps with increasing ex-
tent of crossing (top row, from left to right), and maps produced by our
method (middle row) where only the first two are globally injective. The
energy plots are shown at the bottom.

injectivity for initial maps that are closer to an injective state and

free from the crossing-arm configurations. Figure 16 shows two

different initial maps for the hand mesh in Figure 8 with the same

set of constraints, one using harmonic mapping instead of ARAP

(top), and a more extreme initialization created by first mapping the

hand mesh into a circle using Tutte embedding and then dragging

the constraint vertices to their target locations (bottom). While our

method succeeds in finding a globally injective mapping in the first

case, it fails in the second case, where the result contains skinny

and inverted triangles (highlighted in green boxes) similar to the

failure case shown in Figure 9.

7.4 Minimizing distortion
Besides injectivity, minimizing mapping distortion is another key

consideration for parameterization quality. While our method is

primarily designed for recovering injectivity, the resulting map can

then serve as a starting point for existing, injectivity preserving,

distortion-minimization methods that require initialization with

a starting injective embedding [Fang et al. 2021; Jiang et al. 2017;

Smith and Schaefer 2015]. As an example, starting from the SEA-

optimized injective map of the hand mesh in Figure 8, Figure 17

shows the result of minimizing the Symmetric Dirichlet energy

[Smith and Schaefer 2015] using the simplicial augmentation frame-

work of [Jiang et al. 2017]. This method continuously deforms the

mesh to reduce distortion while preserving both the injectivity of

the map and the point constraints. Observe that the total distortion

of the map is significantly reduced, and features of the hand (e.g., the

fingers) are recovered, while the entire map remains globally injec-

tive. Our method is particularly useful in this constrained mapping

scenario, as injective initial mappings cannot be obtained through

the classical Tutte embedding.

8 DISCUSSION
We have presented, to our knowledge, a first method to recover

global injectivity from an non-injective map subject to arbitrary
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Initial maps SEA

Fig. 16. Changing initialization type: results of our method on two alter-
nate initializations of the hand mesh in Figure 8 while applying the same
constraints. Injectivity is achieved starting from the top initial map but not
for the bottom one (green boxes highlight the inverted triangles).

positional constraints. To do so we have constructed the SEA energy,

a new joint measure of overlap and inversion, sufficiently smooth to

directly support gradient-based optimization. SEA comes equipped

with a guarantee that maps minimizing it will be locally injective

with a bounded area of overlap between non-adjacent triangles. SEA

can then be simply and directly minimized with existing, off-the-

shelf optimization codes, without extra customization. Results then

demonstrate that doing so significantly outperforms state-of-the-

art methods in achieving local injectivity while, at the same time,

recovering global injectivity with a high success rate.

SEA is clearly just a first step towards robust global injectiv-

ity recovery. The "crossing-arm" modes we discuss above remain

challenging in our current optimization. One direction to explore

then is constructing higher-order, Newton-type optimizers for im-

proved convergence in these and other slower cases. Alternately,

further energy modifications encouraging gradients to better re-

solve such overlapped regions are also promising alternatives to

consider. Likewise, as we do not require inversion-free initialization,

scaffolding-type solutions are an interesting possibility to better

incorporate the complement space. Furthermore, while our energy

currently fixes α and θ for the entire map, adapting them to individ-

ual triangles and boundary edges could open up new opportunities

in improving convergence and boosting success rate.

Along with improved convergence, extending our method to 3D

is also an important next step. Here, for example, we can consider

generalizing our occupancy definition to 3D, as our TLC term is

already suitable for 3D. To do so we require a comparable 3D proxy

for boundary faces to optimize occupancy smoothly. Analogously

0

0.015

SEA SEA + Distortion minimization

SD: 273.8 SD: 4.8

Fig. 17. Left: output of an SEA-optimized injective map for the hand mesh
in Figure 8. Right: further minimizing the SEA-generated map with the
Symmetric Dirichlet (SD) distortion energy via the method of [Jiang et al.
2017], which preserves global injectivity and point constraints. Triangles
are colored by their SD distortion.

to our current arc-based solution, it is tempting to subtend a spher-

ical patch over each boundary face. However, interfaces formed

by intersecting spheres among adjacent boundary faces are more

complex when compared to arcs in 2D, making this initial strategy

potentially much less practical. A comparable method for injectivity

recovery in 3D remains an exciting avenue for future exploration.
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A EXCESS, OVERLAP, AND INVERTED AREAS
Here we prove Proposition 5.1 in Section 5, which relates the excess

area to the area of overlapping or inverted triangles. We start with

a lemma on winding numbers, which extends a previous result

(Theorem 4 of [Lipman 2014]) to meshes with both proper and

inverted triangles:

Lemma A.1. Let Φ be a simplicial map of a triangular mesh, and z
a point in the plane that is not on any vertex or edge of Φ. The winding
number of ∂Φ around z is the number of proper triangles of Φ that
cover z minus the number of inverted triangles of Φ that cover z.

Proof. We recall the property of the winding number that it is 0

at any point z outside the curve, and it increments (resp. decrements)

by 1 as z moves across the oriented curve from its right to left (resp.

from its left to right). Let pos(z),neд(z) denote the number of proper

and inverted triangles of Φ that cover z. As the location of z changes,
the two functions change as follows:

(1) If z does not cross ∂Φ, pos(z) and neд(z) either do not change,
or simultaneously increase or decrease by some integer k ≥ 1.

The latter happens when z crosses an interior edge or vertex

of Φ that is incident to both proper and inverted triangles.

(2) When z crosses ∂Φ from right to left, either pos(z) increases
by 1 or neд(z) decreases by 1. Conversely, when z crosses

∂Φ from left to right, either pos(z) decreases by 1 or neд(z)
increases by 1.

In both cases, the differencepos(z)−neд(z) increases (resp. decreases)
by 1 when z crosses the boundary ∂Φ from right to left (resp. from

left to right). Since pos(z) = neд(z) = 0when z is at infinity, pos(z)−
neд(z) has the same value as the winding number of ∂Φ around z
for any z on the plane that is not on the vertices or edges of Φ. □

We now prove the proposition using the lemma above:

Proof of Proposition 5.1: Lemma A.1 shows that a point z con-
tributes to the occupancy O(∂Φ) if and only if pos(z) > neд(z).
As a result, z must be covered by at least one proper triangle. Let
Acover (Φ) be the total area of the plane covered byΦ, andAproper (Φ)
the total area of proper triangles of Φ. Then,

Acover (Φ) ≥ O(∂Φ)
Aproper (Φ) ≥ O(∂Φ)

(4)

On the other hand, the overlap and inverted areas are related to

Acover (Φ) and Aproper (Φ) by:

Aover lap (Φ) = A(Φ) −Acover (Φ)

Ainver t (Φ) = A(Φ) −Aproper (Φ)
(5)

Substituting the Equations 4 into Equations 5 yields the first two

inequalities of the proposition. To prove the last inequality, note

that points covered by Φ but not contributing to the occupancy of

∂Φ must be covered by inverted triangles of Φ. So we have:

Acover (Φ) −O(∂Φ) ≤ Ainver t (Φ). (6)

Substituting Equation 6 into the first equation of Equations 5 yields:

Aover lap (Φ) ≥ A(Φ) − (O(∂Φ) +Ainver t (Φ))

= Aexcess (Φ) −Ainver t (Φ).
(7)

□
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Fig. 18. Comparing singular and non-singular maps.

B CONTINUITY AND SMOOTHNESS OF OCCUPANCY
We will show that the occupancy of a curve undergoing piecewise

smooth deformation is not only continuous, but also C1
smooth

except at some well-defined degenerate (singular) configurations.
Consider a 1-dimensional cell complexM that consists of 1-cells

(edges) and 0-cells (vertices) that form a closed loop, and a map

Ψ : Rn × M → R2 that takes M to a closed curve in the plane

under a set of parameters X = {x1, . . . , xn }. As an example, if Ψ is

a simplicial map, the map parameters are the 2D coordinates of the

mapped vertices ofM . However, Ψ is not limited to simplicial maps,

and Ψ may map each edge ofM into a smooth curve (e.g., the arcs

used in our SEA energy).

Denote the occupancy of the mapped curve Ψ(X ,M) as a function

of X , O(X ) = O(Ψ(X ,M)). We first show that O(X ) is continuous:

Proposition B.1. If Ψ(X ,p) is continuous in both X and p ∈ M ,
then O(X ) in continuous in X .

Proof. The winding number of a closed and oriented curve C
around a point z can be computed as

1

2π of the sum of signed angles

spanned by z and each infinitesimal oriented segment of C . As C
changes continuously, each (infinitesimal) signed angle changes

continuously except when z lies on C . Since the winding number

at p is always an integer, it stays the same as long as C does not

pass through p. In other words, points whose winding numbers

change (which include all those that contribute to the change in

C’s occupancy) are restricted to the region “swept” by C . Since
Ψ(X ,M) is continuous in X , an infinitesimal change of X leads to

an infinitesimal area swept by Ψ(X ,M), and hence the change in

O(X ) is also infinitesimal. As a result, O(X ) is continuous in X . □

To analyze the smoothness of occupancy, we introduce the con-

cept of singular maps. LetΨX (p) = Ψ(X ,p). A pointq on themapped

curve ΨX (M) is called a singular point if |Ψ−1
X (q)| > 1; that is, q has

multiple pre-images inM . Intuitively, a singular point is where two

segments of ΨX (M) intersect (e.g., Figure 18 middle). The map Ψ
is said to be singular at X if ΨX (M) contains an infinite number

of singular points. This happens when two segments of ΨX (M)

completely overlap (e.g., Figure 18 right).

We show that O(X ) is C1
continuous except at the singularities:

Proposition B.2. If ΨX (p) is differentiable in both X and p over
each edge ofM ,O(X ) is differentiable at all X where Ψ is not singular.

Fig. 19. Illustration for the proof. Left: the mapped curves (dotted lines) and
the corresponding boundaries of positively winding regions (solid lines) at
different parameters (distinguished by shades of blue). Middle and right:
the regions swept by the regular and non-regular subsets of Bд , shaded
respectively in green and red, as д increases from 0 to h. We will show
that the (signed) area of both green and red regions admits a well-defined
derivative at h = 0.

Proof. LetA = {a1, . . . ,an } be a set of parameters at which Ψ is

not singular. Our goal is to show that the partial derivative of O(X )

in each parameter exists at X = A. The partial derivative for the i-th
parameter is defined as the limit,

∂O

∂xi
(A) = lim

h→0

O(A + hδi ) −O(A)

h
, (8)

where δi is a length-n vector with 0s except a 1 in the i-th place. We

will show that this limit exists.

We first derive the limit as h approaches 0 from the positive

side (the other side can be treated in a symmetric manner). Let

Cд = ΨA+дδi (M) be the mapped curve for any д ≥ 0, and Bд ⊆ Cд
the boundary of the regions with positive winding numbers. Bд is

oriented such that these positively winding regions are on the left

side of the boundary. Following the same argument in the proof of

Proposition B.1, the change in the occupancy, O(A + hδi ) −O(A),
is the total area swept by the sequence of curves Bд as д increases

from 0 to h. The sweep area is signed, so that a point that is swept

from the left (resp. right) contributes positively (resp. negatively)

to the sweep area. A point that is swept multiple times contributes

to the sweep area with the corresponding multiplicity. Our idea is

to decompose this sweep area into the sum of two type of areas,

one swept by the regular subsets of Bд (to be defined later) and the

other swept by the remainder of Bд , and show that each type of

area admits a well-defined one-sided derivative at h = 0. See Figure

19 for an illustration.

We start with the following observation: for any point p ∈ M ,

its image pд = ΨA+дδi (p), as д changes, switches from being not

on Bд to being on Bд (or vice versa) only at values of д where pд
is a singular point of Cд . This is because the winding numbers of

points on the two sides of Cд around pд do not change until pд is

passed by another segment of Cд . Note that the change of winding
numbers around pд does not always switch the membership of pд
in Bд ; but such a switch always happens at singular points.

Consider the function f (q) that gives, for every point q ∈ C0, the

smallest д for which a pre-image of q onM is mapped to a singular

point on Cд . Let Sд be the set of singular points of Cд , and Πд the

composite map ΨA+дδi ◦ Ψ
−1
A that takes points on C0 to points on

Cд . Note that Πд is only one-to-one at non-singular points of C0.
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We define:

f (q) =

{
0, q ∈ S0
argminд>0 Πд(q) ∈ Sд, q ∈ C0 \ S0

By this definition, the set of points for which f evaluates to zero is

precisely the singular points S0, which is a finite set because Ψ is

not singular at A.
We define the regular subset of the boundary B0, denoted by Rh ,

as points where f evaluates to be greater than h. In other words, Rh
consist of non-singular points of B0 whose image under Πд remain

non-singular for all д ∈ [0,h]. Based on the observation above, the

image of the regular subset Πд(Rh ) remains on the boundary Bд
for all д ∈ [0,h], which we also call the regular subsets of Bд . See
Figure 19 (middle and right) for an example.

As д increases from 0 to h, we call the area swept by the regular

subsets Πд(Rh ) the regular sweep (denoted by RSh ), and the area

swept by the remaining subsets Bд \ Πд(Rh ) the non-regular sweep
(denoted by NSh ). We can re-write the limit in Equation 8 as:

lim

h→0

O(A + hδi ) −O(A)

h
= lim

h→0

RSh + NSh
h

= lim

h→0

RSh
h
+ lim
h→0

NSh
h
,

(9)

We next derive the limits for the regular and non-regular sweeps:

• Regular sweep: LetCC(Rh ) denote the connected components

of Rh after removing the image of the vertices of M . Since

ΨX (p) is differentiable along each edge ofM , and each con-

nected component r ∈ CC(Rh ) is non-singular, the mapΠд(q)
is differentiable over д ∈ [0,h] and q ∈ r . Hence the regular
sweep can be expressed as the following integral,

RSh =
∑

r ∈CC(Rh )

∫
r

∫ h

0

det(∇Πд(q))dдdq

where ∇Πд(q) is the Jacobian of Π at д and q, and det is the

determinant operator. As h → 0, Rh approaches the entire

boundary B0 minus the (finite) set of singular points S0, and
the ratio RSh/h has a well-defined limit,

lim

h→0

RSh
h
=

∑
r ∈CC(B0\S0)

∫
r
det(∇Π0(q))dq (10)

• Non-regular sweep: We shall first bound the unsigned area

swept by the non-regular subsets of Bд . This area is no more

than the product of (1) themaximum length of the non-regular

subset on Bд for any д ∈ [0,h], and (2) the maximal distance

travelled by any point on the non-regular subsets as д in-

creases from 0 to h. We can bound each quantity as follows:

– We first argue that, for any q ∈ C0 such that Πд(q) (which
may consist of more than one point if q is singular) in-

tersects the non-regular subset of Bд for some д ∈ [0,h],
f (q) ≤ h. To see why, suppose q ∈ B0, then q cannot be

in the regular subset Rh , and hence f (q) ≤ h. Otherwise,
since q < B0 but Πд(q) ∩ Bд , ∅, then by the observation

made earlier, one of Πд′(q) must be a singular point onCд′

for some д′ ≤ д, implying that f (q) ≤ д′ ≤ h. Let Th be

the subset of C0 where f evaluates to be no greater than h,
and lh be the maximum length of Πд(Th ) over all д ∈ [0,h].
By the argument above, lh is an upper bound of (1).

– Note that (2) is bounded by h times the maximum travel

speed for any point on Bд . Since the speed is the partial

derivative of Ψ in xi , which is bounded, (2) is bounded by

h ∗γ where γ is the maximum absolute value of that partial

derivative overM and a sufficiently large range of д.
Since the absolute value of non-regular sweep is no more

than the unsigned area swept by the non-regular subsets, we

have

∥NSh ∥ ≤ lh ∗ γ ∗ h

As h → 0, lh approaches the length ofTh (due to the continu-

ity of Ψ), which in turn approaches 0 since T0 becomes the

(finite) singular set S0. Since γ is a constant, we conclude that

lim

h→0

∥NSh ∥

h
≤ lim

h→0

lh ∗ γ = 0,

which implies

lim

h→0

NSh
h
= 0 (11)

Substituting Equations 10 and 11 into 9 shows that the limit in

Equation 8 exists for h approaching from the positive side, and

the limit equals the righthand side of Equation 10. The case of h
approaching from the negative side is completely symmetric, and

the limit is identical to that in Equation 10. This proves that the

partial derivative
∂O
∂xi

(A) exists for any xi ∈ X . □

C SEA AND EXCESS AREA
Here we prove Proposition 5.2 in Section 5, which relates the SEA

energy to the excess area and injective maps. We start with a lemma

that shows that the arc-occupancy of the boundary ∂Φ is a lower

bound of the boundary’s occupancy:

Lemma C.1. Let Φ be a simplicial map of a triangular mesh and
θ > 0, then Oθ (∂Φ) ≤ O(∂Φ). Furthermore, if Φ is globally injective
and inversion-free, there exists some θ0 such that Oθ (∂Φ) = O(∂Φ)
for all θ < θ0.

Proof. Following the same argument in the proof of Lemma A.1,

the winding number of the arc-boundary Γθ (∂Φ) around a point z
is the number of positively-oriented triangles and flaps covering z
minus the number of inverted triangles and flaps covering z. Since
each arc-edge is on the right of its straight edge and sharing the

same orientation, the flaps are always positively oriented. As a result,

if the winding number of ∂Φ around z is already positive (implying

that there are more proper than inverted triangles covering z), so
must be the winding number of Γθ (∂Φ). Conversely, if the winding
number of Γθ (∂Φ) around z is positive but the winding number of

∂Φ is not, z must be covered by some flap. As a result, the region

with positive winding numbers w.r.t. Γθ (∂Φ) is covered by the union
of the regions with positive winding numbers w.r.t. ∂Φ and regions

covered by all flaps. This yields the inequality,

O(Γθ (∂Φ)) ≤ O(∂Φ) + Bθ (∂Φ).

Substituting the above into Equation 2 yieldsOθ (∂Φ) ≤ O(∂Φ). The
equality holds if (i) Bθ (∂Φ) equals the area of the region covered

by all the flaps, which implies that there is no overlap between the

flaps, and (ii) every point z covered by some flap has non-positive

winding number w.r.t. ∂Φ but positive winding number w.r.t. Γθ (∂Φ),
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which, in conjunction with (i), implies that the winding number of

∂Φ around z must be zero. In summary, Oθ (∂Φ) = O(∂Φ) if no flap
overlaps any other flap or any region that has a non-zero winding
number w.r.t. ∂Φ.
We next show that the condition above holds for an injective

and inversion-free Φ and all θ < θ0 for some positive value θ0 that
can be derived from Φ. It is obvious that the condition holds for

θ = 0, in which case the arc-edges are identical to the straight edges

and the flaps vanish. Let θ0 be the smallest value of θ such that the

condition no longer holds. Since Φ is injective and inversion-free,

as θ increases from 0, the flaps expand into the region outside the

boundary ∂Φ, which has zero winding number w.r.t. ∂Φ. For the
condition to fail at θ = θ0 and not for any θ < θ0, the arc-edges
of two edges e1, e2 ∈ ∂Φ must come into contact at θ = θ0. If
these e1, e2 do not share a common vertex, then by injectivity of

Φ, e1, e2 do not intersect, and θ0 is the smallest θ at which the two

arc-edges Γθ (e1), Γθ (e2) are tangent. If e1, e2 share a common vertex,

then θ0 equals the exterior angle of that vertex. In either case, θ0 is
a non-zero value that can be derived from Φ. □

We shall refer to the threshold angle θ0 in Lemma C.1 as the

clearance angle of an injective map Φ. Nowwe prove the proposition:

Proof of Proposition 5.2: We note that the TLC is an upper

bound of the unsigned area, that is, Aα (Φ) ≥ A(Φ) for all α ≥ 0 [Du

et al. 2020]. Since Oθ (∂Φ) ≤ O(∂Φ) for all θ > 0 by Lemma C.1, we

derive, for α ≥ 0, θ > 0:

Eα ,θ (Φ) = Aα (Φ) −Oθ (∂Φ) ≥ A(Φ) −O(∂Φ) = Aexcess (Φ) (12)

Suppose Φ is injective and inversion-free, and let θ0 be its clear-
ance angle. Lemma C.1 shows that Oθ (∂Φ) = O(∂Φ) for all θ < θ0.
Since A0(Φ) = A(Φ), the inequality in Equation 12 becomes equality

for α = 0 and θ < θ0, making E
0,θ (Φ) = Aexcess (Φ). Finally, since

Φ has no overlapping or inverted triangles, Proposition 5.1 shows

that Aexcess (Φ) = 0, which proves E
0,θ (Φ) = 0 for all θ < θ0. □

D INJECTIVITY AT SEA MINIMA
Here we prove the injectivity guarantee for SEA (Proposition 5.3).

The proof closely follows that of the injectivity guarantee for TLC

in [Du et al. 2020] (Proposition 4.3). They differ when it comes to

the type of constraints (fixed boundary for TLC, versus arbitrary

constraints for SEA) and the scope of guarantee (local injectivity

within an intersection-free boundary for TLC, versus local injectivity

with bounded overlap within an arbitrary boundary for SEA).

We start by re-stating a few useful lemmas from [Du et al. 2020].

We shall refer to [Du et al. 2020] for the proofs of these lemmas

whenever possible and only state the necessary extensions. In the

following,At denotes the unsigned area of a triangle t of a simplicial

map, t̃ is the auxiliary triangle of t for defining TLC, and Dt denotes

the Dirichlet energy of the linear map from t to t̃ .
The first lemma states a few useful properties of the Dirichlet

energy (see proof in [Du et al. 2020]):

Lemma D.1 (Lemma B.1 in [Du et al. 2020]). Let e be one edge
of t , h be the distance to e from the vertex opposite to e , and ˜h be the
corresponding distance in t̃ . Then,

(1) Dt ≥ At ( ˜h/h)
2/2

(2) h/|e | ≥ ˜h2/4Dt

The next lemma shows that a simplicial map Φ will contain a

triangle with an arbitrarily large Dirichlet energy if there is some

triangle of Φ with sufficiently small unsigned area:

Lemma D.2 (Lemma B.2 in [Du et al. 2020]). For any δ > 0, there
exists some ϵ > 0 such that if a simplicial map Φ contains a triangle
whose unsigned area is smaller than ϵ , then Φ must contain a triangle
t such that Dt > δ and AtDt > ϵδ .

Proof. The proof of Lemma B.2 in [Du et al. 2020] assumes that

all boundary edges of ∂Φ are fixed, and thereby having a fixed

length, in order to provide a lower bound of the length of interior

edges. Specifically, it constructs a sequence of triangles that link

each interior edge e of Φ to a boundary edge e0. It shows that, if
Dt < δ for all t in Φ, the edge length ∥e∥ is lower-bounded by ∥e0∥
multiplied by a constant that depends only on the combinatorial

structure of the domain meshM (and not on the map Φ). This edge
length lower bound is then used to complete the rest of the proof.

Without a fixed boundary, we can still provide a lower bound

of (interior or exterior) edge lengths, by leveraging the fact that

at least two vertices (say p,q) are constrained within each edge-

connected component of triangles of M . Let P be a path of edges

in M that links p and q. The longest edge in Φ(P), denoted by e0,
is therefore no shorter than the ratio of the Euclidean distance

between Φ(p) and Φ(q) over the number of edges on P . Since p,q
are constrained and P is independent of Φ, that ratio is a constant

independent of Φ, and hence the edge length ∥e0∥ has a constant
lower bound. For every other edge e (interior or exterior) of Φ in the

same edge-connected component as Φ(p),Φ(q), we can construct

a sequence of triangles linking e to e0. This sequence, just like the
edge-to-boundary triangle sequence in the proof of [Du et al. 2020],

depends only on the combinatorial structure of M . Following the

same argument therein, ∥e ∥ is lower-bounded by ∥e0∥ multiplied

by a constant that is independent of Φ. □

The next lemma builds on the previous one and states that the

rate of increase in TLC as α increases from 0 can be arbitrarily large,

if Φ has a sufficiently small triangle (see proof in [Du et al. 2020]):

Lemma D.3 (Lemma B.3 in [Du et al. 2020]). For any δ > 0, there
exists some ϵ > 0 and β > 0 such that if a simplicial map Φ contains
a triangle whose unsigned area is smaller than ϵ , then for any α < β ,
∂Aα (Φ)/∂α > δ .

An immediate corollary of this lemma is that if Φ contains a

degenerate triangle (whose area is zero), the partial derivative of

TLC, ∂Aα (Φ)/∂α , is unbounded at α = 0. On the other hand, [Du

et al. 2020] shows that this partial derivative is well-defined and

bounded for any map without degenerate triangles and any α ≥ 0.

Before proving the proposition, we introduce a new lemma that

lower-bounds the overlapping triangle areas for a simplicial map

with overwound vertices.

Lemma D.4. Suppose a simplicial map Φ contains an interior vertex
v such thatv is incident to only proper triangles and the sum of angles
around v is not 2π . Then Aover lap (Φ) ≥ ϵη2π/2δ , where ϵ is the
minimum of At among all t ∈ Φ, η is the shortest height of any
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Fig. 20. Illustration for the proof.

auxiliary triangle t̃ for t ∈ Φ, and δ is the maximum of Dt for all
t ∈ Φ.

Proof. Sincev is interior and all incident triangles ofv are proper,

the angle sum at v must be a positive multiple of 2π . In this case,

the multiplier is greater than 1. Consider the intersection region I
of the half-spaces defined by the supporting lines of edges on the

1-ring boundary of v (yellow region in Figure 20). Each point in I
(away from the vertices and edges of Φ) is covered by at least two

triangles incident to v . Let A(I ) be the area of I , we therefore have
Aover lap (Φ) ≥ A(I ).

Note that I is convex and v lies inside I . Hence A(I ) can be com-

puted by summing the areas of triangles each made up of v and a

segment bounding I . Denote the perimeter of I as L(I ), and let h be

the shortest distance from v to any segment bounding I . We have

the inequality:

A(I ) ≥ h ∗ L(I )/2

On the other hand, since the shape with the smallest perimeter that

attains a given area is a circle, we can lower-bound L(I ) by A(I ) as

L(I ) ≥ 2

√
A(I )π .

Combining the two inequalities above yields

A(I ) ≥ h2π .

Now consider the triangle t incident to v that has h as its height.

Let e denote the edge of t opposite to v , and ˜h be the height of the

auxiliary triangle t̃ corresponding to h. Since At ≥ ϵ , ˜h ≥ η, and
Dt ≤ δ , and by Lemma D.1, we have:

h ∗ ∥e∥ ≥ 2ϵ

and

h/∥e∥ ≥ ˜h2/4Dt ≥ η2/4δ

Multiplying these two inequalities gives:

h2 ≥ ϵη2/2δ

As a result,

Aover lap (Φ) ≥ A(I ) ≥ h2π ≥ ϵη2π/2δ

□

Now we prove the proposition using the lemmas above:

Proof of Proposition 5.3: We closely follow the approach taken

in the proof of Proposition 4.3 in [Du et al. 2020]. We separately

consider the case that Φ has some small-area triangle (including de-

generate triangles) and the case that it does not. The key difference

with [Du et al. 2020] lies in the latter case, which we further divide

into three sub-cases: Φ has some inverted triangle; Φ has overwound

interior vertices; or Φ has an overlapping area greater than λ that

is not caused by inverted triangles or overwound vertices. The last

two sub-cases are unique to our setting.

We start with a few remarks. First, since Φ0 is injective, Proposi-

tion 5.2 shows that there exists some θ0 (the clearance angle of Φ0)

such that E
0,θ (Φ0) = 0 for all θ < θ0. In the following, we consider

some fixed θ in this range, and we shorthand the SEA energy Eα ,θ
as Eα . Second, since the occupancy term of SEA does not depend

on α , SEA shares the same partial derivative as TLC with respect

to α . That is, ∂Aα (Φ)/∂α = ∂Eα (Φ)/∂α for any map Φ (injective or

not) and α ≥ 0. Third, since Φ0 is injective, ∂Aα (Φ0)/∂α is always

bounded, and so is ∂Eα (Φ0)/∂α . We pick an arbitrary but small

positive value τ , and let δ be the maximum value of ∂Eα (Φ0)/∂α
for all α < τ .
We first consider the case that Φ has a triangle whose unsigned

area is smaller than ϵ , which is found by Lemma D.3 for δ . This case
is already considered in the proof of Proposition 4.3 in [Du et al.

2020], which shows that there exists some β ∈ (0, τ ] such that for

any α < β , ∂Eα (Φ)/∂α > δ ≥ ∂Eα (Φ0)/∂α . On the other hand, by

Proposition 5.2, E0(Φ) ≥ 0 = E0(Φ0). Hence Eα (Φ) > Eα (Φ0) for

any α < β .
Otherwise, suppose Φ has no triangle whose unsigned area is

smaller than ϵ (which includes degenerate triangles). We can further

assume that Dt ≤ 2δ for any t ∈ Φ. Otherwise, and since At ≥ ϵ ,
we have Dt > 2δ and AtDt > 2ϵδ . Following the arguments in the

proof of Lemma B.3 in [Du et al. 2020], the conclusion of that lemma

(which is re-stated as LemmaD.3 above) holds; that is, ∂Aα (Φ)/∂α >
δ for any α < β . This would allow us to conclude that, just like the

case above, Eα (Φ) > Eα (Φ0) for any α < β .
Now we consider what happens if Φ is not locally injective, not

inversion-free, or Aover lap (Φ) > λ. If Φ is not locally injective or

inversion-free, Φ either has an inverted triangle (whose unsigned

area is no smaller than ϵ) or has an interior vertex whose angle sum

is not 2π . We separately consider these sub-cases.

• Suppose Φ has some inverted triangle, whose unsigned area

is no smaller than ϵ . By Propositions 5.1 and 5.2, Eα (Φ) ≥

Ainver t (Φ) ≥ ϵ for any α ≥ 0. Since E0(Φ0) = 0 and the

partial derivative ∂Eα (Φ0)/∂α is bounded, we conclude that

there exists some κ1 > 0 such that, for all α < κ1, Eα (Φ0) <

ϵ ≤ Eα (Φ).
• Suppose Φ contains only proper triangles but some vertex v
has an angle sum other than 2π . SinceAt ≥ ϵ andDt ≤ 2δ for

all t ∈ Φ, LemmaD.4 shows thatAover lap (Φ) ≥ σ = ϵη2π/4δ
where η is the smallest height among all auxiliary triangles.

Note that σ is independent of the map Φ. By Propositions 5.1

and 5.2, Eα (Φ) ≥ Aover lap (Φ) ≥ σ for any α ≥ 0. Similar to

the previous sub-case, there exists some κ2 > 0 such that, for

all α < κ2, Eα (Φ0) < σ ≤ Eα (Φ).
• SupposeAover lap (Φ) > λ. By Propositions 5.1 and 5.2,Eα (Φ) ≥
Aover lap (Φ) > λ for any α ≥ 0. Similar to the previous sub-

cases, there exists some κ3 > 0 such that, for all α < κ3,
Eα (Φ0) < λ < Eα (Φ).

The proof is completed by setting α0 = min(β,κ1,κ2,κ3). □
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