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Presentation Notes
Mapping triangle meshes into the 2D plane is a fundamental task in graphics and geometry processing.


2D Texture
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Presentation Notes
A well-known application is texture mapping, where the map is used to transfer color information from the 2D texture image to the 3D surface.
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Most applications require the mapping to be injective, or one-to-one. That is, any two distinct points of the mesh are mapped to two different points in the plane.

A non-injective map is not usable in many applications, such as texture mapping.
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For a map on triangle mesh to be injective, it must satisfy several criteria.

The first group of criteria concerns the local neighborhood of vertices, edges and triangles. Specifically, the triangle cannot be degenerate, two neighboring triangles should have the same orientation, and the sum of the angles around a vertex should be 2pi. The vertices with an angle sum more than 2pi are called overwound vertices.

For the map to be injective everywhere, it has to be free of overlap between any two triangles, even though they are not adjacent to each other. 

However, an injective map can be entirely inverted, which is also not desirable in practice. 

In this work, we consider global injective mapping that is inversion free.
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positional constraints
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There are some applications where the mapping is computed under positional constraints. For example, these constraints are used in constrained texture mapping and handle-based deformation.
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In this work, we take as input a source mesh and a group of positional constraints and try to compute a globally injective mapping satisfying the constraints.


» Tutte embedding (e 1963

* Convex boundary and no positional
constraints

Tutte embedding

[Tutte 1963]
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There are many methods to compute injective mappings. However, we are not aware of any method that is designed for arbitrary positional constraints.

A classical method to obtain an injective map is Tutte embedding. However, it requires fixing a convex boundary. And it also doesn’t accept arbitrary positional constraints.�


* Tutte embedding rute 1963

* Convex boundary and no positional
constraints

. Mamtenance methods

[Hormann and Greiner 2000], [Schiller et al. 2013], [Smith and Schaefer 2015],
AMIPS [Fu et al. 2015], [Liu et al. 2016], SLIM [Rabinovich et al. 2017], CM

[Shtengel et al. 2017], [Claici et al. 2017], SCAF[Jiang et al. 2017], BCQN [Zhu et al.

2018], [Liu et al. 2018], [Su et al. 2020], IDP [Fang et al. 2021]

* Require injective maps to initialize

injective initial
map

SCAF

[Jiang et al. 2017]
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More recently, there are maintenance-based methods that start from an injective map and deform the map to improve the map quality while preserving injectivity. However, these methods require injective maps to initialize, which are not generally available when there are positional constraints.


* Tutte embedding rute 1963

* Convex boundary and no positional
constraints

. Mamtenance methods

[Hormann and Greiner 2000], [Schiller et al. 2013], [Smith and Schaefer 2015],
AMIPS [Fu et al. 2015], [Liu et al. 2016], SLIM [Rabinovich et al. 2017], CM

[Shtengel et al. 2017], [Claici et al. 2017], SCAF[Jiang et al. 2017], BCQN [Zhu et al.

2018], [Liu et al. 2018], [Su et al. 2020], IDP [Fang et al. 2021]

* Require injective maps to initialize

* Inversion-free methods

[Aigerman and Lipman 2013], LBD [Kovalsky et al. 2015], SA [Fu and Liu 2016], FF
[Su et al. 2019], [Hefetz et al. 2019], TLC [Du et al. 2020]

* Cannot avoid overlapping triangles

overlapping
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There is another group of methods that can start from a non-injective map and try to remove all the inverted triangles. However, these methods cannot deal with overlaps, as in overwound vertices, or overlapping between non-adjacent triangles.


* Tutte embedding rute 1963

* Convex boundary and no positional
constraints

» Maintenance methods

¢ [Hormann and Greiner 2000], [Schiiller et al. 2013], [Smith and Schaefer 2015],
AMIPS [Fu et al. 2015], [Liu et al. 2016], SLIM [Rabinovich et al. 2017], CM

[Shtengel et al. 2017], [Claici et al. 2017], SCAF[Jiang et al. 2017], BCQN [Zhu et al.

2018], [Liu et al. 2018], [Su et al. 2020], IDP [Fang et al. 2021]

* Require injective maps to initialize

* Inversion-free methods

¢ [Aigerman and Lipman 2013], LBD [Kovalsky et al. 2015], SA [Fu and Liu 2016], FF
[Su et al. 2019], [Hefetz et al. 2019], TLC [Du et al. 2020]

* Cannot avoid overlapping triangles

* Remeshing methods

¢ [Eckstein et al. 2001], Matchmaker [Kraevoy et al. 2003], [Lee et al. 2008],
[Agarwal et al. 2008], [Weber and Zorin 2014], [Gu et al. 2018], [Shen et al. 2019]

* May change the mesh structure

1024 vertices 1743 vertices

Progressive Embedding
[Shen et al. 2019]
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Finally, some methods compute injective mapping but require changing the mesh structure, such as adding more vertices. In some applications, the change of mesh structure is not allowed.


* First method for computing globally injective maps under
positional constraints (without changing the mesh
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In this work, we propose the first method to compute injective mapping under positional constraints without changing the mesh structure. Our method starts from an initial map, that may contain various artifacts, such as inverted triangles, overwound vertices, and even global overlaps. By optimizing an energy, our method produces a globally injective map while satisfying the positional constraints.


* New energy for promoting injectivity
e Captures both inverted and overlapping areas
* Smooth almost everywhere
* Theoretical guarantees of injectivity at global minima
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The core of our contribution is a new energy whose minimization promotes injectivity.
Our energy captures both inverted and overlapping areas. It is sufficiently smooth to allow gradient-based solvers to proceed. And we proved the energy has theoretical guarantees of injectivity at its global minima. 
�Next, we will define this energy and discuss its properties.



e Number of times a curve C

00
travels CCW around a point p
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Our energy utilizes the concept of winding number, which I will briefly introduce here. 

Consider a closed, oriented curve in the plane. The winding number at a point is the number of times this curve travels counter-clockwise around the point. 
Depending on the location of the point, the winding number can be an integer that may be either positive, zero, or negative.


 Number of times a curve C
travels CCW around a point p
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For each region partitioned by the curve, all the points in the region have the same winding number.


* Consider a mesh bounded by C

* Winding number is the number
of non-inverted triangles minus
number of inverted triangles
covering a point C
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We introduce another interpretation of winding number, that makes it relevant to our problem. Consider a mesh whose boundary is the curve C. 

Then, the winding number is the number of non-inverted triangles minus the number of inverted triangles covering that point.


* The total area with positive
winding numbers
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Based on the winding number, we introduce a new quantity called occupancy, which roughly measures the area of the plane covered by the non-inverted triangles of a mesh.
And this quantity is defined as the total area with positive winding numbers.

We can show that, for any mesh bounded by the curve, each point with a positive winding number has to be covered by at least one non-inverted triangle in the mesh.


* The total area with positive
winding numbers

* The area covered by at least
one non-inverted triangle for
any mesh bounded by C
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Based on the winding number, we introduce a new quantity called occupancy, which roughly measures the area of the plane covered by the non-inverted triangles of a mesh.
And this quantity is defined as the total area with positive winding numbers.

We can show that, for any mesh bounded by the curve, each point with a positive winding number has to be covered by at least one non-inverted triangle in the mesh.


 Mesh T with boundary 9T

excess area total unsigned area occupancy

Acexcess (T)|= Aunsigned (T)|— 0(aT)

* Properties

* maX(onerlap:Ainverted) = Aexcess = onerlap + Ainverted
e Zero if and only if T has no overlapping or inverted triangles
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Based on the occupancy, we now introduce a measure that captures the non-injectivity of a map. We call this measure the excess area. It is defined as the difference between the total unsigned area of the mesh and the occupancy of its boundary.

We can show that the excess area is greater than both the area of the overlap between triangles, and the area of inverted triangles, and it’s smaller than the sum of both.
This means, the excess area is 0 if and only if there are no overlapping triangles or inverted triangles.

In other words, this is a measure that captures the non-injectivity of a map.
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Here we show a few simple examples that illustrate the different quantities we used. Observe that, the excess area captures both the area of overlapping between triangles, as well as the area of the inverted triangle. 

However, we cannot directly optimize the excess area, because this measure can be non-smooth.


excess area total unsigned area occupancy o

Acexcess (T)|= Aunsigned (T)|— 0(aT)

degenerate triangle coinciding boundary
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unszgned _ ]
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In fact, each of the two terms in the excess area has non-smoothness in some generic configurations. 

For example, the unsigned area is not smooth as a triangle transitions from an inverted state to a non-inverted state, and the sharp change happens when the triangle becomes degenerate. 

For occupancy, it is not smooth when the map transitions from an overlapping state to a non-overlapping state, and the sharp change happens when the boundary edges coincide. 

The important thing to notice, is that the non-smoothness happens in generic configurations when the map transition from a non-injective state to an injective state.

To smooth the excess area, we will propose a smoother version of each of these two terms.


* Total lifted Content (TLC) pucta 200

* Area of lifted triangles

Auxilary

triangle
Lifted triangle

\ .<\
<\ i | (xiﬂ yi'\/auif\/avi)

a=0.5
a=0.3

a = 0.05
a=20

(Ve ug, o vy)
| —

a: scale

y



Presenter
Presentation Notes
To smooth the unsigned area, we use an energy that we introduced in the last year’s siggraph. It is called the total lifted content. It measures the area of triangles not in 2D, but in a lifted 4-dimensional space.

The lifting is defined by concatenating the 2D coordinates of each vertex with the coordinates of an additional triangle, called auxiliary triangle, into 4-dimensional coordinates.
The lifting is controlled by a parameter alpha, which also controls the smoothness of the energy.

When alpha is 0, the total lifted content is the same as the total unsigned area. As alpha increases, the energy becomes smoother.


* Arc Occupancy
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The idea of smoothing the occupancy is to avoid boundary edges coinciding. We do that by replacing each straight edge with a curve. In our case, the curve is a circular arc, whose center angle is theta, which is a constant parameter for every arc.

We define the arc occupancy as the difference between the occupancy of the new curve, formed by these arcs, and the total area bounded by each edge and its arc.

The arc occupancy is smooth almost everywhere, except when the arcs coincide, which rarely happens during the transition from an overlapping to a non-overlapping state.

Here, the theta angle also plays a role of controlling the smoothness of the energy.

When theta is 0, it is the same as the occupancy, because the arcs become straight edges. As the theta increases, the energy gets smoother. 


* Mesh T with boundary dT

smooth total arc
excess area lifted content occupancy

Ewo(T) =/ Ao (1|~ 04 (3T)

* Properties
e Foranya > 0,6 > 0, SEA = maX(onerlap;Ainverted)

 For sufficiently small a and @, the minima of SEA is locally injective with
arbitrarily small overlapping area
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Finally, we defined our energy, the smooth excess area, as the difference between the two smooth terms, the total lifted content and the arc occupancy.
The energy is controlled by two parameters, alpha and theta. 

We show that, for any positive parameters, this energy, just like the excess area, is greater than both the overlapping and the inverted area of the map. So, it captures non-injectivity. 

Although larger alpha and theta leads to smoother energy, we show that for sufficiently small alpha and theta, the global minima of the energy is guaranteed to be locally injective, and its overlapping area is bounded by an arbitrarily small constant.

However, in practice, the injectivity is not guaranteed, because the alpha and theta value needed by the theoretical guarantee may be unfeasibly small. And a gradient-based solver is not able to find the global minimum of this non-convex energy. 
 
Nonetheless, we found that minimizing the energy using an off-the-shelf gradient-based solver with a reasonably small alpha and theta is quite successful in recovering global injectivity for challenging real-world examples.


* Quasi-Newton (L-BFGS)

 Termination Criteria
* Map is globally injective
* No inverted/degenerate triangles and no boundary intersection [Lipman 2014]
* Reaches a max #iterations (e.g., 10 000)
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In our experiments, we used an off-the-shelf quasi-Newton solver. 

We terminate the optimization when the map becomes globally injective.
To check it efficiently, we adopt the criteria by Lipman, that is, a map is injective if and only if there are no inverted or degenerate triangles, or boundary intersections.

We also terminate the optimization if it has not converged to a local minimum after a maximal number of iterations.

Next, I will show some results of our method.
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We start with a simple handcrafted example.

This initial map has two positional constraints. It also has two inverted triangles and two boundary intersections. This example is created by dragging one corner of a square to a far away location. 

First, we will show the result of optimizing a non-smooth energy, by taking the difference between the total lifted content and the occupancy. The occupancy is not a smooth energy as we have explained before. As a result, the optimization gets stuck when two boundary edges coincide.

In contrast, by replacing the occupancy with arc occupancy, the solver can proceed and successfully find an injective map. 

Notice, for visualization purpose, we pick a large theta value. However, in the rest experiments, we will use a smaller theta value, in order to find injective maps for more challenging examples. 



initial ours Large-scale Bounded Simplex
map (a=10"%6=01) Distortion (LBD) Assembly (SA)

[Kovalsky et al. 2016] [Fu and Liu 2016]
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Here we show a more complex handcrafted example. The initial map is created by dragging a few vertices on a denser square mesh to far away locations. This creates more inverted triangles.

However, even for this very challenging example, our method is able to find an injective map. Here, we are using a smaller theta value to ensure injectivity.

In contrast, existing inversion-free methods, such as Large-scale bounded distortion map, LBD and simplex assembly, SA, are able to remove inverted triangles, but they cannot resolve overlap triangles, and this results in both overwound vertices and boundary intersection. 


source mesh initial map

« 1791 test examples
* Up to 20 constraints
* Non-injective initial map by ARAP
« Parameters
ca=10"%60=0.1
 Comparison with
inversion-free methods

i LBD [Kovalsky et al. 2016]
® positional constraint

i SA [Fu and Liu 2016] e overwound vertex

® boundary intersection
A inverted triangle
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We have constructed a large-scale benchmark dataset with thousands of real-world and complex examples.

In each example, a source mesh is mapped to the plane with up to 20 positional constraints. The initial maps are created by ARAP, which often contain many inverted triangles, over-wound vertices and global overlaps.

For our method, we use the same alpha and theta parameters throughout the experiments, and we compare with inversion-free methods, LBD and SA.
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Here we show the success rate of each method, in creating maps that are free from inverted triangles, 
that are locally injective, that is, further removes over-wound vertices, or globally injective maps, which do not have global overlaps. 

Observe that our method significantly outperforms the inversion-free methods in achieving injective maps and achieves a globally injective map for more than 85 percent of the benchmark examples.

Next, we will look at some concrete success and failure examples.


100 inverted triangles 4 inverted triangles 2748 inverted triangles
3 overwound vertices 6 overwound vertices 0 overwound vertices
12 boundary intersection 13 boundary intersection 29 boundary intersection

source initial ours LBD SA
mesh map
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In this example, the initial map contains lots of inverted triangles, overwound vertices and boundary intersections, and a large area of triangle overlap.

Our method successfully finds an injective map by optimizing our smooth excess area energy.
We zoom in the region where the boundary is getting very close to each other, but they do not touch.

Neither LBD nor SA was able to remove all the inverted triangles, even though they are designed to do so. In addition, overwound vertices and boundary intersections remain in the map.


63 inverted triangles : 1 inverted triangles 0 inverted triangles
0 overwound vertices ‘ 2 overwound vertices 2 overwound vertices
r,/f, 25 boundary intersection j&\\ﬂ 22 boundary intersection 6 boundary intersection

source initial ours LBD SA
mesh map
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Here is another example. The initial map has many thin needle-like parts poking into the mesh, which causes some narrow overlapping regions and many boundary intersections.

Our method can still successfully find an injective map. The zoom-in shows that the overlapping is resolved, and the boundary does not touch.

In contrast, neither LBD nor SA was able to find an injective map. And a large area of overlapping remains in the map.


initial map ours

crossing arm
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Our method failed to find a globally injective map for about 15 percent of the benchmark examples. For most of them, the solver has not converged when the maximal number of iterations are reached.

we find a very common configuration that causes the slow convergence. That’s what we call the crossing-arm configuration. It is where the different parts of the mesh cross over each other. 

And in this case, to minimize the overlapping area, our method can result in a mesh that shrinks the crossing region to a point, making it difficult for each part to retract from the other part. 
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In summary, we have proposed the first method to compute injective mappings starting from non-injective initial maps while satisfying positional constraints.

Our method significantly outperforms inversion-free methods on a large benchmark dataset.

The core contribution is a new energy, smooth excess area. The energy captures both inverted and overlapping areas, and it is sufficiently smooth to support gradient-based optimization. And the energy has theoretical guarantees of injectivity at its global minima.

The crossing-arm configuration causes optimization to slow down. One way to improve the convergence rate is to use high-order Newton-type solvers. This requires our energy to have higher order smoothness. �Extending our energy to 3D is also an exciting future direction, with applications like volumetric mapping and 3D deformation.�
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