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The problem we try to solve in this paper is to compute mappings between different shapes.

Mapping is useful because it carries information from one shape to another.

A well-known application is texture mapping, where the mapping is used to pull back the 2D texture onto the surface mesh.
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Another application is data transfer, where mapping is used to transfer interesting data from the source mesh to the target domain.
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In these applications, an injective, or so-called one-to-one mapping is crucial because it ensures the information carried by the mapping is well-preserved.

An injective map takes two different points in the source to two different points in the target. However, a non-injective map can take two points in the source to only one point in the target. For example, point P and Q in the source is mapped to just one point in the target.

This happens because the triangle BDC is flipped by the mapping, as I highlight using the red color.

To compute an injective mapping for applications such as texture mapping and annotation transfer, it is necessary to ask that the mapping doesn’t cause any triangles to flip.
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so, in order for a map to be injective, the resulting mesh shouldn’t contain any flipped or degenerate triangles.
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These applications and the injective requirement motivate us to solve the problem of computing fixed-boundary injective mappings.

The input to the problem is a source mesh and a fixed target boundary. The boundary should be in one-to-one correspondence with the boundary of the source mesh, and it shouldn’t have any self-intersection.

The output is a mapping that avoids flipped or degenerate elements, which in this case, also guarantees the mapping is injective.
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There has been lot of previous works on mappings.

Some of them focus on minimizing mapping distortion.

They take an injective mapping with high distortion, and return a mapping with low distortion.

However, if the input mapping is non-injective, they usually can’t recover an injective mapping.

As a result, these methods usually require an injective mapping as initialization.
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Other works don’t require an injective initialization, but tries to produce an injective mapping.

The most famous one is Tutte embedding, which is guaranteed to produce injective mappings if the target domain is a 2D convex domain.

However, there is no guarantee for non-convex or 3D target domains.




PREVIOUS WORK

11

• Minimize mapping distortion
– [Schüller et al. 2013], [Liu et al. 2016], [Smith and Schaefer 2015], AMIPS 

[Fu et al. 2015], SLIM [Rabinovich et al. 2017], CM [Shtengel et al. 2017], 
[Claici et al. 2017], BCQN [Zhu et al. 2018], [Liu et al. 2018]

– require injective mappings as initialization

• Tutte Embedding [Tutte 1963]

– guarantee injectivity for 2D convex domains
– no guarantee for non-convex or 3D domains

• Produce injective mappings
– may change mesh structure [Agarwal et al. 2008], 

[Weber and Zorin 2014], [Campen et al. 2016], [Gu et al. 2018], [Shen et 
al. 2019]

injective

1024 vertices 1743 vertices

Presenter
Presentation Notes
Some work can produce injective mappings for non-convex domains. 

For example, from this bunny model to a non-convex spiral domain.

However, sometimes they need to modify mesh structure and add new vertices.
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At last, some methods try to produce injective mappings without changing mesh structure. 

Recent works in this category include “large-scale bounded distortion mappings” (LBD), “simplex assembly” (SA), and “fold-over free mappings” (FF).

However, in practice, they can fail on complex target domains, as shown in this example where Lucy is mapped into letter G. Note the flipped triangles are highlighted in red.

Our work also belongs to this category, so we will compare with these methods in the experiment section.
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13

Presenter
Presentation Notes
In this paper, we propose a new method to produce injective mappings into fixed-boundary domains in 2D and 3D, while maintaining the mesh structure.

This video shows how our method produces an injective mapping from Lucy to letter G.

The core of our method is a new energy function, called total lifted content (TLC), whose minimization leads to injective mappings.

The energy has theoretical guarantee at its global minimum and also achieves high success rate in practice.

To compare with previous methods, we construct a large benchmark dataset for injective mappings.

Next, I will first talk about the total lifted content energy, and then go through some experiments on this benchmark.
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10734 triangle meshes
904 tetrahedron meshes
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Let’s talk about the TLC energy.



TOTAL UNSIGNED AREA (TUA) [XU ET AL. 2011]
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Our new energy is closely related the total unsigned area energy, or TUA.

By its name, this energy is just the sum of areas of all the triangles in the mesh.

The key observation is, when the mesh boundary is fixed, as long as there is no flipped triangle, the total area of triangles equals to the area of the fixed domain.

We can plot the total area as a function of the center blue vertex. You can see that there is a flat plateau region in the middle.

However, if some triangles are flipped, the total area of triangles will get larger and the energy will increase.




PROBLEM OF TUA [XU ET AL. 2011]
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In conclusion, at the global minimum of total unsigned area energy, there is no flipped triangles.

However, no flip doesn’t necessary mean injective, because there could still be degenerate triangles.

Indeed, for the example on the right, there is one degenerate triangle, however, the total area is still at global minimum. So, the TUA energy has some non-injective global minimum.

Moreover, the energy landscape of TUA is piecewise linear, and between the linear pieces, there are sharp edges, where the gradient of the energy is not well-defined. 

This is a bad news for common optimization techniques that requires gradient information.

….
(Ideally, we want to preserve total unsigned area’s ability to prevent flipping, while avoiding the undesirable properties like non-smoothness and non-injective global minimum.)
  
We observe that, both non-smoothness and non-injective global minimum happens when there are some degenerate triangles.

Therefore, the key is to deal with degeneracy.
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Here comes the key idea of our paper, instead of computing the area of triangles in 2D plane, which can become degenerate sometimes, 

we associate with each triangle t an auxiliary triangle t\tilde. We require the auxiliary triangle to be a fixed but non-degenerate triangle.

We further combine the original triangle t and the auxiliary triangle t\tilde to obtain a lifted triangle t\hat.

More precisely, the lifted triangle is obtained by concatenating the coordinates of the original triangle t and the auxiliary triangle t\tilde.

In this way, the lifted triangle always has some contribution from the auxiliary triangle, and since the auxiliary triangle is not degenerate, the lifted triangle will never be degenerate either, even when the triangle t is indeed degenerate.

In summary, by a simple lifting strategy, we guarantee that there is no degeneracy in the 4D lifted space.


 

The lifting strategy is specially designed so that the lifted triangle can never become degenerate even when the original triangle is degenerate.

This is achieved using a third auxiliary triangle, which is fixed but not degenerate. We enforce a projection of the lifted triangle to be always equal to the auxiliary triangle. 

This means some projection of the lifted triangle is always non-degenerate, thus also ensuring that the lifted triangle itself can never be degenerate.
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Formally speaking, we construct the lifted triangle by combining the coordinates of the original triangle and the auxiliary triangle. 

For each vertex of the lifted triangle, the first two coordinates come from the original triangle, and the last two coordinates come from the auxiliary triangle. 

In this way, if we project the 4D lifted triangle into the last two dimensions, we get the auxiliary triangle. Since we require the auxiliary triangle to be non-degenerate, this construction also guarantees the lifted triangle will never become degenerate.

Notice we introduce an alpha parameter to control the scaling of the auxiliary triangle. We will elaborate more about this alpha parameter in later slides.

Now, we can define the lifted content of triangle t as the area of the lifted triangle t/hat.

For a mesh, each triangle in the mesh has its own auxiliary triangle and lifted triangle. And the total lifted content of the mesh is defined as the sum of the area of all the lifted triangles.
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Okay. Now, let’s compare side-by-side the total unsigned area with our newly defined total lifted content energy, on the same pentagon example.
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Let’s conclude this section by discussing the parameter alpha in our energy.
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Let’s start by looking at a simple 2D example. Here a grid mesh with a hole in the middle is mapped to a domain of the same shape, but with the inner boundary rotated by 180 degree.

The initialize the mapping using Tutte embedding, as it has a close theoretical relation to our TLC energy. However, Tutte embedding have 8 flipped triangles. 

We show the result of optimizing total unsigned area (TUA), given its non-smoothness and flatness, it gets stuck in a non-injective situation.

While if we use TLC with a small positive alpha, we obtain an injective mapping. 

Notice we use this single alpha value through all the benchmark experiments.

For comparison, we show the result of FF, LBD and SA. You can see that not all of them can succeed on this simple example.
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Now, let’s look at a more complex 2D parameterization example, where a eagle is mapped to a 2D domain.

Again, due to the highly non-convex shape, Tutte embedding produces many flipped triangles near the target boundary.

Our TLC succeed to remove all the flipped triangles.

However, the FF method can’t recover a fully injective mapping.
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Now, let’s see a 3D parameterization example, where a tetrahedral mesh is mapped to a polycube domain.

Tutte embedding creates even more flipped tetrahedrons on this example, while our method recover an injective mapping.

The SA method can’t remove all the flipped elements.
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Finally, we show a 3D deformation example. 

An armadillo is deformed to generate a sequence of intermediate frames. And we want to map the interior of source mesh to each of the frame.

Let’s look at one frame.

The tutte embedding creates lots of flipped elements, our TLC succeed, but LBD method fails to produce an injective mappings.

We plot the number of flipped elements in LBD result versus the frame number. This frame corresponds to one point in the plot.
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Let’s look at another frame near the end of the deformation sequence.

You can see that Tutte embedding create even more flipped elements. We still succeed, but LBD result has more flipped elements.

We put this frame in the plot.

The plot with all the frames looks like this. We can see that with increasing frame number, the target domain becomes more and more twisty, and LBD tends to create more and more flipped elements.
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2D Parameterization 3D Parameterization 3D Deformation
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Mean: 93% Mean: 89% Mean: 67%100% 100% 100%
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In summary, our benchmark has 3 categories, 2D parameterization, 3D parameterization and 3D deformation.

Each category contains hundreds of test examples.

Here, for each category, we show the success rate of our method and the methods we compare to.

It is clear that our method achieves the highest success rate in all categories.

In fact, we achieve a 100% success on the whole benchmark dataset.

However, as the test examples become harder and harder from left to right, other methods show less and less success.
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• Benchmark dataset for 
injective mappings
– 10734 triangle meshes
– 904 tetrahedron meshes
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Finally, to summarize.

We propose a new energy (Total lifted content) for producing injective mappings.

The energy has theoretical guarantee that its global minimum is injective. 


We construct a large benchmark dataset for fixed boundary injective mappings, and demonstrates that our method has high success rate in practice, compared to previous methods.

Last, there are some interesting directions to explore in the future.

Our theory only concerns global minimum. It would be great if we can say something about the local minimum of our TLC energy.

For auxiliary simplices, currently, we are using equilateral triangles, but it is interesting to explore other types and study the influence of auxiliary simplices on the ability to find injective mapping. 



Code and Dataset    
https://duxingyi-charles.github.io/publication/lifting-

simplices-to-find-injectivity/
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We have publish our code and dataset online. If you are interested, please go there and have a try.

Thanks for attending this talk.
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