LIFTING SIMPLICES TO FIND INJECTIVITY

XINGYI DU, Washington University in St. Louis, USA
NOAM AIGERMAN and QINGNAN ZHOU, Adobe Research, USA
SHAHAR Z. KOVALSKY, Duke University, USA
YAJIE YAN, Facebook, USA
DANNY M. KAUFMAN, Adobe Research, USA
TAO JU, Washington University in St. Louis, USA
Texture mapping

surface mesh

map

2D texture
MAPPING APPLICATIONS

Data transfer

source surface Data target domain target surface

map
INJECTIVE (ONE-TO-ONE) MAPPING
INJECTIVE (ONE-TO-ONE) MAPPING
INJECTIVE (ONE-TO-ONE) MAPPING

injective

degeneracy
INJECTIVE (ONE-TO-ONE) MAPPING

injective

no flip/degeneracy

non-injective

degeneracy

flip
FIXED-BOUNDARY INJECTIVE MAPPINGS

input: (1) source mesh

output: mapping

- no flip/degeneracy

(2) target boundary
- correspond to source boundary
- no self-intersection
PREVIOUS WORK

• Minimize mapping distortion
 – [Schüller et al. 2013], [Liu et al. 2016], [Smith and Schaefer 2015], AMIPS
 [Fu et al. 2015], SLIM [Rabinovich et al. 2017], CM [Shtengel et al. 2017],
 [Claici et al. 2017], BCQN [Zhu et al. 2018], [Liu et al. 2018]
 – require injective mappings as initialization
PREVIOUS WORK

- Minimize mapping distortion
 - [Schüller et al. 2013], [Liu et al. 2016], [Smith and Schaefer 2015], AMIPS
 - [Fu et al. 2015], SLIM [Rabinovich et al. 2017], CM [Shtengel et al. 2017],
 - [Claici et al. 2017], BCQN [Zhu et al. 2018], [Liu et al. 2018]
 - require injective mappings as initialization

- Tutte Embedding [Tutte 1963]
 - guarantee injectivity for 2D convex domains
 - no guarantee for non-convex or 3D domains
PREVIOUS WORK

- Minimize mapping distortion
 - [Schüller et al. 2013], [Liu et al. 2016], [Smith and Schaefer 2015], AMIPS [Fu et al. 2015], SLIM [Rabinovich et al. 2017], CM [Shtengel et al. 2017], [Cliaei et al. 2017], BCQN [Zhu et al. 2018], [Liu et al. 2018]
 - require injective mappings as initialization

- Tutte Embedding [Tutte 1963]
 - guarantee injectivity for 2D convex domains
 - no guarantee for non-convex or 3D domains

- Produce injective mappings
 - may change mesh structure [Agarwal et al. 2008], [Weber and Zorin 2014], [Campen et al. 2016], [Gu et al. 2018], [Shen et al. 2019]

```
injective
```

1024 vertices

1743 vertices
PREVIOUS WORK

• Minimize mapping distortion
 – [Schüler et al. 2013], [Liu et al. 2016], [Smith and Schaefer 2015], AMIPS [Fu et al. 2015], SLIM [Rabinovich et al. 2017], CM [Shtengel et al. 2017], [Claici et al. 2017], BCQN [Zhu et al. 2018], [Liu et al. 2018]
 – require injective mappings as initialization

• Tutte Embedding [Tutte 1963]
 – guarantee injectivity for 2D convex domains
 – no guarantee for non-convex or 3D domains

• Produce injective mappings
 – may change mesh structure [Agarwal et al. 2008], [Weber and Zorin 2014], [Campen et al. 2016], [Gu et al. 2018], [Shen et al. 2019]
 – often fail on complex target domains [Aigerman and Lipman 2013], LBD [Kovalsky et al. 2015], SA [Fu and Liu 2016], FF [Su et al. 2019]
CONTRIBUTION

• New method to produce injective mappings
 – fixed-boundary domain in 2D/3D
 – maintain mesh structure

• New energy (Total Lifted Content, TLC)
 – theory: global minima are injective
 – practice: high success rate
CONTRIBUTION

• New method to produce injective mappings
 – fixed-boundary domain in 2D/3D
 – maintain mesh structure

• New energy (Total Lifted Content, TLC)
 – theory: global minima are injective
 – practice: high success rate

• Benchmark dataset
 10734 triangle meshes
 904 tetrahedron meshes
TOTAL UNSIGNED AREA (TUA) [XU ET AL. 2011]

no flip

\[
\text{total area } (\quad) = \quad
\]

flip

\[
\text{total area } (\quad) = \quad + \quad
\]
PROBLEM OF TUA [XU ET AL. 2011]

- global minimum \Rightarrow no flip

- non-injective global minimum

$$\text{total area (} \quad \text{) } =$$
Auxiliary triangle
- fixed
- not degenerate

Lifted triangle
not degenerate

Triangle
degenerate

--- not smooth

no degeneracy

Lifting

degeneracy

non-injective global minimum

\[\text{total area} = \]

\((x_i, y_i, u_i, v_i) \)

\((u_i, v_i) \)
TOTAL LIFTED CONTENT (TLC)

Auxiliary triangle
- fixed
- not degenerate

\[\text{TLC} = \sum_{t \in \text{Mesh}} \text{LiftedContent}(t) \]

\[\text{LiftedContent}(t) = \text{Area}(\hat{t}) \]
triangle

\[\text{LiftedContent}(t) = \text{Volume}(\hat{t}) \]
tetrahedron

Total lifted content of a mesh

\[\text{TLC}(\text{Mesh}) = \sum_{t \in \text{Mesh}} \text{LiftedContent}(t) \]

We use equilateral auxiliary simplices
TUA VS TLC

Total Unsigned Area

- not smooth
- non-injective global minimum

Total Lifted Content

- smooth
- global minimum is injective
PARAMETER α

TLC with different α

- $\alpha \rightarrow \infty$
 - minimize Dirichlet energy (auxiliary \rightarrow target)
 - equilateral auxiliary simplices \Rightarrow Tutte embedding

- $\alpha \rightarrow 0$
 - minimize Dirichlet energy (target \rightarrow auxiliary)
 - 2D: MIPS energy

[Tutte, 2000]
BENCHMARK

[Aigerman and Lipman 2013]
[Weber and Zorin 2014]
[Fu et al. 2016]
Scaffold [Jiang et al. 2017]
[Liu et al. 2018]
FF [Su et al. 2019]
IPC [Li et al. 2020]
2D SIMPLE

Tutte TLC FF
TUA LBD
SA

flipped triangle

8 19 36 49

Tutte
TUA ($\alpha = 0$)
TLC ($\alpha = 10^{-6}$)
FF [Su et al. 2019]
LBD [Kovalsky et al. 2015]
SA [Fu and Liu 2016]
2D COMPLEX

Tutte

TLC

FF [Su et al. 2019]
3D PARAMETERIZATION

Tutte 3123

TLC

flipped tetrahedron

SA [Fu and Liu 2016]
3D DEFORMATION

Deform

Tutte 283
TLC
LBD [Kovalsky et al. 2015] 5

LBD #flip
frame number
3D DEFORMATION

Deform

Tutte
804

TLC

LBD [Kovalsky et al. 2015]
23

LBD #flip

frame number
BENCHMARK SUMMARY

2D Parameterization
- 10743 meshes
- Mean: 93%

3D Parameterization
- 176 meshes
- Mean: 89%

3D Deformation
- 728 meshes
- Mean: 67%
CONCLUSION

- New energy (TLC) for injectivity
 - guarantee injectivity at global minimum
 - high success rate in practice

- Benchmark dataset for injective mappings
 - 10734 triangle meshes
 - 904 tetrahedron meshes

Future Directions
- injectivity at local minimum
- explore different types of auxiliary simplices
TLC

Code and Dataset
https://duxingyi-charles.github.io/publication/lifting-simplices-to-find-injectivity/