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Figure 1: When used to parameterize meshes into the 2D plane, our isometric variants of injectivity energies empirically tend
to yield injective results with low isometric distortion. Left: an initial map of Lucy into letter S, which contains many inverted
triangles (red), is optimized while holding its boundary fixed, using the TLC energy [Du et al. 2020], the Fold-Free Mapping
(FFM) method of [Garanzha et al. 2021], and our energy - IsoTLC. Right: an initial map, which contains inverted triangles (red),
overwinding vertices (purple) and global overlaps (boxed), is optimized while fixing only a set of sparse positional constraints
(blue) without constraining the boundary, by minimizing either the SEA energy of [Du et al. 2020] or our energy, IsoSEA. In
both cases, our method leads to the injective map with the lowest isometric distortion (max(𝜎1, 1/𝜎2)) of the triangles, as shown
by the histograms and the color map on the mesh.

ABSTRACT
Computing injective maps with low distortions is a long-standing

problem in computer graphics. Such maps are particularly challeng-

ing to obtain in the presence of positional constraints, because an

injective initial map is often not available. Recently, several energies
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were proposed and shown to be highly successful in optimizing in-

jectivity from non-injective initial maps while satisfying positional

constraints. However, minimizing these energies tends to produce

elements with significant isometric distortions. This paper presents

simple variants of these energies that retain their desirable traits

while promoting isometry. While our method is not guaranteed to

provide an injective map, we observe that, on large-scale 2D and

3D data sets, minimizing the proposed isometric variants results in

a similar level of success in recovering injectivity as the original

energies but a significantly lower isometric distortion.

CCS CONCEPTS
• Computing methodologies → Mesh models.
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1 INTRODUCTION
This paper concerns recovering injective, low-distortion mappings

of triangular and tetrahedral meshes under given constraints. The

ability to compute such maps is crucial in a wide range of applica-

tions in computer graphics and geometry processing, such as tex-

ture mapping [Hormann et al. 2007], remeshing [Alliez et al. 2008],

deformation [Zhu et al. 2018a], shape correspondence [Kraevoy and

Sheffer 2004] and physical simulation [De Goes and James 2017].

Such tasks often involve three different requirements of the

given map: 1) it usually needs to satisfy positional constraints, such
as mapping a specific vertex of the mesh to a specific location.

For instance, in texture mapping, a surface mesh may need to be

mapped to a domain with a prescribed boundary, and additionally

some internal vertices are required to align with corresponding

locations in the texture image; 2) Themap should have low distortion,
preserving the shape of the original mesh as much as possible; 3)

the map is one-to-one, i.e., injective, meaning that the mapped mesh

does not have elements that overlap one another and each element

has a positive area (or volume).

Unfortunately, satisfying all three properties simultaneously

proves to be quite difficult: on one hand, there is no known method

which is guaranteed to produce injective mappings for the given

constraints. On the other hand, distortion optimization techniques

usually require a feasible initialization (i.e., an initial map which is

injective and satisfies the constraints). In some cases, even a feasible

initial map may not be a good initializer for optimization meth-

ods, as high-distortion triangles lead to numerical issues which

hinder convergence. In this paper, we tackle this problem and pro-

pose a method to compute injective, low-distortion, and constraint-

satisfying maps, without assuming a proper initialization. This

method can be used on its own in tasks which require such maps,

or otherwise can be used in tandem with other map optimization

techniques where our result can serve as a good initializer.

1.1 Review of injective and low-distortion
mapping

Computing injective maps under positional constraints, let alone

minimizing distortion, is a non-trivial task. In fact, it is only in

the special case of mapping a triangular mesh to the 2D domain

with a fixed convex boundary that an injective map can be directly

obtained, via Tutte’s embedding [Floater 2003; Tutte 1963]. This

work has been extended to slightly-more complex domains [Aiger-

man and Lipman 2015]. However, no known method can guarantee

injectivity for general types of positional constraints (e.g., non-

convex boundaries or interior constraints), without altering the

mesh structure, or for mapping 3D meshes.

A common paradigm is to minimize some distortion measure

while preserving the injectivity of an initial map [Fu et al. 2015;

Jiang et al. 2017; Levi and Zorin 2014; Liu et al. 2018, 2016; Myles

and Zorin 2013; Rabinovich et al. 2017; Schüller et al. 2013; Smith

and Schaefer 2015; Su et al. 2020], with efficient means developed

to optimize these energies [Claici et al. 2017; Shtengel et al. 2017;

Zhu et al. 2018b]. Such energies often act as a barrier, such as MIPS

[Hormann and Greiner 2000] and Symmetric Dirichlet [Smith and

Schaefer 2015], which is infinite on degenerate elements (with zero

area of volume), thereby preventing elements from degeneration

and inversion. However, these methods require an injective starting

point, which is not available for general positional constraints.

On the other hand, soft constraints with penalty energies can be

added into these methods [Jiang et al. 2017], although constraint-

satisfaction is not guaranteed.

An alternative approach is to recover injectivity from initial,

non-injective maps while keeping the constraints fixed. Many such

methods [Aigerman and Lipman 2013; Fu and Liu 2016; Hefetz et al.

2019; Kovalsky et al. 2015; Naitsat et al. 2020; Su et al. 2019; Xu et al.

2011] can produce low-distortion maps, but they often suffer from

failure cases in which an injective map is not recovered.

Closer to our approach, a few recent methods show greater suc-

cess in recovering injectivity by minimizing energies that are specif-

ically designed to promote injectivity. Du et al. [2020] proposed to

minimize the Total Lifted Content (TLC) energy to compute injective

mapping with a fixed boundary. TLC is a smooth approximation of

the total unsigned area (or volume) of the mapped elements. This

energy was generalized to enable mapping triangular meshes to

the plane with arbitrary positional constraints [Du et al. 2021]. The

generalized energy, called Smooth Excess Area (SEA), is a smooth

proxy of the total inverted and overlapping area. Both TLC and SEA

are readily minimized by standard gradient-based solvers. However,

a key limitation of both energies is that their minimization may

result in significant isometric distortions (see Figure 1).

Recently, Garanzha et al. [2021] introduced a new energy for

recovering inversion-free, constraint-satisfying maps that also have

low isometric distortions. The authors apply the penalty technique

of [Garanzha and Kaporin 1999] on a barrier energy to obtain a

smooth function that heavily penalizes inverted elements while

reducing both angle and area distortions of non-inverted elements.

Using a customized solver, minimizing the energy yields maps

with much lower distortions than [Du et al. 2020] while retaining

its robustness in restoring injectivity (see Figure 1 left). However,

the penalty energy does not consider overlaps between triangles,

and hence it cannot be used as-is to recover injectivity when the

boundary is not fully constrained.

Concurrent to our work, Wang et al. [Wang et al. 2022] presented

a technique for free-boundary mapping of 2D meshes under posi-

tional constraints. Instead of proposing a new energy, the authors

combine several existing methods (e.g., [Botsch and Kobbelt 2004;

Jiang et al. 2017; Su et al. 2019]) into a practically effective pipeline

for achieving global injectivity with low distortions.

It is possible that an injective map satisfying the given positional

constraints may not exist without altering the mesh connectivity

(see Figure 3 in the Supplemental Materials). Methods that employ

remeshing and refinement therefore have more flexibility in achiev-

ing injectivity [Agarwal et al. 2008; Campen et al. 2016; Gillespie

https://doi.org/10.1145/3550469.3555419
https://doi.org/10.1145/3550469.3555419
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et al. 2021; Gu et al. 2018; Shen et al. 2019; Weber and Zorin 2014].

However, the resulting maps cannot be immediately utilized by

applications that require adherence to the input mesh structure.

1.2 Contributions
As reviewed above, while the variational approach has been ex-

tensively used for recovering injectivity, energies that promote

injective, low-distortion, and constraint-satisfying maps remain

scarce. This paper makes another step towards filling this gap.

We propose a modification to the energies introduced in TLC [Du

et al. 2020] and SEA [Du et al. 2021], which augments them from

solely inducing injectivity to also reducing distortion. The modi-

fied energies, which we call Isometric TLC (IsoTLC) and Isometric
SEA (IsoSEA), inherit the desirable traits of TLC and SEA: they

are well-defined for both injective and non-injective maps, readily

minimized (with a fixed parameter) using standard gradient-based

solvers, and equipped with provable properties at global energy

minima (even though such minima are unlikely to be reached in

practice due to the non-convexity of the energies).

Our energies are evaluated on both fixed-boundary and free-

boundary mapping benchmarks, and the resulting maps exhibit

significantly lower isometric distortion than TLC and SEA (see Fig-

ure 1) while maintaining similarly high success rates in recovering

injectivity. Furthermore, maps minimizing IsoTLC in the fixed-

boundary benchmark typically have lower distortion than those

produced by [Garanzha et al. 2021], most notably in 2D. Lastly,

we show that our method can produce initial maps that facilitate

distortion-optimization algorithms to achieve better convergence

than starting from other initializers.

2 METHOD
2.1 Preliminaries

Problem statement. We assume to be given a rest mesh 𝑀 whose

elements are 𝑑-dimensional simplicies (e.g., triangles, tetrahedra,

etc.), embedded inR𝑛 for𝑛 ≥ 𝑑 . We assume that every element of𝑀

is positively oriented (i.e., having a positive 𝑑-dimensional volume)

and no two elements overlap in their interior. The boundary of

𝑀 , 𝜕𝑀 , may consist of one or multiple connected components.

Additionally, we are given a set of positional constraints, described

as pairs of a vertex index and its desired target position in R𝑑 .

Our output is a piecewise-linear map 𝑇 : 𝑀 → R𝑑 , i.e., a map

which is linear over each element of 𝑀 . 𝑇 is represented via an

assignment of new coordinates to each vertex of𝑀 , andwe alternate

between referring to 𝑇 as both the map and the mapped mesh. We

aim to output a map 𝑇 that meets the following criteria, if it exists:

(1) Constraint-satisfying: The positional constraints are all met.

(2) Globally injective (and non-inverting): The mesh 𝑇 has only

positively oriented elements, and no two elements of𝑇 over-

lap in their interior.

(3) Low-distortion: The map 𝑇 should minimize both angle and

area distortions.

Our approachmodifies the injectivity-inducing energies TLC [Du

et al. 2020] and SEA [Du et al. 2021] to also encourage low distor-

tion. The core observation used in the derivation of both energies

is that a piecewise-linear map 𝑇 is injective if and only if all its

elements are positively oriented and the boundary map 𝜕𝑇 is injec-

tive [Lipman 2014]. Hence, these energies are formulated so as to

ensure triangles have correct orientation. The boundary map can

either be set to be injective via positional constraints, leading to the

TLC energy, or otherwise be optimized along with the triangles’

orientation, leading to the SEA energy.

TLC for fixed-boundary mapping. TLC assumes a given, fixed

target boundary 𝜕𝑇 , possibly with additional interior constraints,

and creates a smooth, robust proxy for the sum of unsigned volumes

of all elements. The proxy is constructed by lifting the vertex coor-

dinates of each 𝑑-dimensional simplex 𝑡 of 𝑇 to 2𝑑 dimensions and

measuring the volume of the lifted simplex. Specifically, lifting is

controlled by two parameters, a positively oriented 𝑑-dimensional

auxiliary simplex 𝑡̃ and a non-negative scalar 𝛼 . Each vertex of the

lifted simplex has coordinates {𝑥1, . . . , 𝑥𝑑 ,
√
𝛼𝑥1, . . . ,

√
𝛼𝑥𝑑 }, where

{𝑥1, . . . , 𝑥𝑑 } are the coordinates of a vertex of 𝑡 and {𝑥1, . . . , 𝑥𝑑 }
are the coordinates of the corresponding vertex of 𝑡̃ . The volume

of the lifted simplex is called the lifted content of 𝑡 and denoted by

𝐴𝑡̃ ,𝛼 (𝑡). Du et al. [2020] show that, for any 𝛼 > 0, 𝐴𝑡̃ ,𝛼 (𝑡) is always
positive and smooth, even if 𝑡 is degenerate or inverted [Du et al.

2020]. The Total Lifted Content (TLC) of a mesh 𝑇 , given a set of

auxiliary simplicies 𝑇 , one for each element of 𝑇 , is then defined as

the sum,

𝐴
𝑇,𝛼

(𝑇 ) =
∑︁
𝑡 ∈𝑇

𝐴𝑡̃ ,𝛼 (𝑡) (1)

Du et al. [2020] prove that, for 𝑑 = 2, 3 and assuming an injective

map exists for the given boundary map, the minimizer of 𝐴
𝑇,𝛼

(𝑇 )
is injective for any choice of auxiliary simplicies 𝑇 and sufficiently

small values of 𝛼 .

SEA for free-boundary mapping. SEA [Du et al. 2021] tackles

cases where a triangular mesh (𝑑 = 2) is to be mapped injectively

but without necessarily constraining its boundary curve. They

construct an energy that smoothly approximates the inverted and

overlapping triangle areas. They define the excess area of 𝑇 as∑︁
𝑡 ∈𝑇

|𝐴(𝑡) | −𝑂 (𝜕𝑇 ), (2)

where 𝐴(𝑡) is the signed area of a triangle 𝑡 , and 𝑂 (𝐶) is the oc-
cupancy of a closed curve 𝐶 defined as the total area of the plane

where the winding number is positive (the winding number of 𝐶
around a point is the number of times that 𝐶 travels around the

point). The excess area is zero if and only if there is zero inverted or

overlapping triangle area, which is equivalent to injectivity except

for the presence of degenerate triangles.

A smooth proxy is devised by replacing the first term of the

excess area with TLC and the second term with the arc-occupancy
𝑂𝜃 (𝜕𝑇 ), defined on a new curve that replaces each edge of 𝜕𝑇 with

an arc of center angle 𝜃 , leading to Smooth Excess Area (SEA),

𝐴
𝑇,𝛼,𝜃

(𝑇 ) = 𝐴
𝑇,𝛼

(𝑇 ) −𝑂𝜃 (𝜕𝑇 ) . (3)

Du et al. [2021] proved that, for sufficiently small 𝛼 and 𝜃 , SEA is

minimized by a locally injective map with bounded total overlap-

ping area, where a map 𝑇 is locally injective if it has only positively

oriented elements and no two vertex-adjacent elements overlap.

We now begin deriving the modifications to the above energies

in order to make them distortion-reducing.
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2.2 Isometric TLC
Distortion analysis. We first analyze the relation between the

TLC energy [Du et al. 2020] and the map’s distortion when the

boundary of the map is fully constrained. To do so, we introduce

a singular-value form of the lifted content, 𝐴𝑡̃ ,𝛼 (𝑡). Denote 𝐿 the

matrix that transforms the edge vectors of 𝑡̃ to the corresponding

vectors of 𝑡 , and {𝜎1, . . . , 𝜎𝑑 } its singular values. Let 𝐴𝑡̃ be the

volume of the auxiliary simplex 𝑡̃ (note that 𝐴𝑡̃ > 0). We show in

the Supplemental Materials (Section 1) that,

𝐴𝑡̃ ,𝛼 (𝑡) = 𝐴𝑡̃

√︃
Π𝑑
𝑖=1

(𝜎2
𝑖
+ 𝛼). (4)

It is helpful to examine the residue of the lifted content of 𝑡 after

subtracting its signed volume,

𝑅(𝑡) = 𝐴𝑡̃ ,𝛼 (𝑡) −𝐴(𝑡)

= 𝐴𝑡̃

(√︃
Π𝑑
𝑖=1

(𝜎2
𝑖
+ 𝛼) − det(𝐿)

)
.

(5)

Since the lifted content 𝐴𝑡̃ ,𝛼 (𝑡) approximates the unsigned volume

|𝐴(𝑡) |, the residue 𝑅(𝑡) approximates the inverted volume of 𝑡 . Note
that 𝑅(𝑡) is a smooth function in 𝑡 , and its sum over all elements

of 𝑇 differs from TLC only by the total signed volumes, which is a

constant if the boundary is fully constrained. As a result, the sum

of 𝑅(𝑡) over all elements shares the same energy minimizer as TLC.

We next show that 𝑅(𝑡) is minimized by a similarity transforma-

tion in two dimensions and by a singular map in higher dimensions

(see proof in Supplemental Materials, Section 2):

Proposition 2.1. For any 𝛼 > 0, 𝑅(𝑡) ≥ 𝛼
𝑑
2 𝐴𝑡̃ . Equality holds

when either of the following holds:

(1) 𝑑 = 2, 𝜎1 = 𝜎2 and det(𝐿) ≥ 0.
(2) 𝑑 > 2 and 𝜎1 = . . . = 𝜎𝑑 = 0.

We visualize the residue 𝑅(𝑡) for 𝑑 = 2 in Figure 2 (a) as a

function of 𝜎1, 𝜎2 (𝜎1 is given the sign of det(𝐿)). Observe that the
function is smoothly defined even when 𝑡 is inverted (det(𝐿) < 0)

or degenerate (| det(𝐿) | = 𝜎1𝜎2 = 0), and it reaches its minimum

when 𝜎1 = 𝜎2. Note that such minimizers are scale-invariant, which

explains the extremely small triangles after minimizing TLC (see

Figure 1 left).

Energy modification. To reduce the area distortions created when
minimizing TLC, we introduce another smooth measure that ap-

proximates the unsigned volume |𝐴(𝑡) |. Unlike the lifted content,

the residue of this measure after subtracting 𝐴(𝑡) is minimized by

an isometry. The measure, which we call the isometric lifted content,
has the form:

𝐴𝑖𝑠𝑜

𝑡̃,𝛼
(𝑡) =

√︂
𝐴(𝑡)2 + 𝛼

2
𝑑−1𝐴𝑡̃ ,1 (𝑡)2 + 𝛼2𝐴2

𝑡̃
. (6)

Inside the square root is a weighted sum of squares of the volume

of the simplex (𝐴(𝑡)), the lifted content at unit scale (𝐴𝑡̃ ,1 (𝑡)), and
the volume of the auxiliary simplex (𝐴𝑡̃ ). Using the singular-value

form of the lifted content (Equation 4), we obtain an alternative

form of isometric lifted content,

𝐴𝑖𝑠𝑜

𝑡̃,𝛼
(𝑡) = 𝐴𝑡̃

√︂
Π𝑑
𝑖=1

𝜎2
𝑖
+ 𝛼

2
𝑑−1Π

𝑑
𝑖=1

(𝜎2
𝑖
+ 1) + 𝛼2 . (7)

It is easy to see that, like the lifted content, the isometric lifted

content is smoothly defined over 𝑡 and greater than |𝐴(𝑡) | for any
𝛼 > 0. We now analyze its residue after subtracting 𝐴(𝑡),

𝑅𝑖𝑠𝑜 (𝑡) = 𝐴𝑖𝑠𝑜

𝑡̃,𝛼
(𝑡) −𝐴(𝑡)

= 𝐴𝑡̃

(√︃
Π𝑑
𝑖=1

𝜎2
𝑖
+ 𝛼

2
𝑑−1Π

𝑑
𝑖=1

(𝜎2
𝑖
+ 1) + 𝛼2 − det(𝐿)

)
.

(8)

As shown below, 𝑅𝑖𝑠𝑜 (𝑡) is minimized in any dimension 𝑑 only

when 𝑡, 𝑡̃ are congruent (see proof in Supplemental Materials, Sec-

tion 2):

Proposition 2.2. For any 𝛼 > 0, 𝑅𝑖𝑠𝑜 (𝑡) ≥ 𝛼𝐴𝑡̃ , and equality
holds only when 𝜎1 = . . . = 𝜎𝑑 = 1 and det(𝐿) > 0.

We visualize 𝑅𝑖𝑠𝑜 (𝑡) for 𝑑 = 2 in Figure 2 (b,c) for two different

𝛼 values (0.1,1). Observe that 𝑅𝑖𝑠𝑜 (𝑡), like 𝑅(𝑡), is smooth for all 𝑡 ,

but it reaches minimum at 𝜎1 = 𝜎2 = 1. We further compare with

the penalty energy of [Garanzha et al. 2021] defined over a single

triangle. This energy is a weighted sum of angle and area distortion

measures (we set weight 𝜆 = 1 as suggested in the paper), and it is

controlled by a parameter 𝜖 . As 𝜖 decreases, the energy approaches

a barrier function that is infinite when the triangle is degenerate

or inverted. We visualize their energy in Figure 2 (d,e,f) for three

different values of 𝜖 = 0.1, 0.5, 1. Observe that the penalty energy

is smoothly defined and penalizes triangle inversion. However, its

energy minimum drifts away from isometry (𝜎1 = 𝜎2 = 1) towards

the singular map (𝜎1 = 𝜎2 = 0) as 𝜖 increases. In contrast, the

minimum of 𝑅𝑖𝑠𝑜 (𝑡) stays at isometry regardless of 𝛼 .

We define the Isometric TLC (IsoTLC) of a mesh 𝑇 as the sum of

isometric lifted content of all elements of 𝑇 ,

𝐴𝑖𝑠𝑜

𝑇 ,𝛼
(𝑇 ) =

∑︁
𝑡 ∈𝑇

𝐴𝑖𝑠𝑜

𝑡̃,𝛼
(𝑡) (9)

A key property of TLC for 𝑑 = 2, 3, as mentioned earlier, is the

injectivity of maps attaining the global minimum, if the problem

is feasible (again, we note that reaching the global minimum in

practice is unlikely due to the nonconvexity of the energy). IsoTLC

shares the same property for any𝑑 ≥ 2 (see Supplemental Materials,

Section 3):

Proposition 2.3. Let 𝑇0 be an injective map with a fully con-
strained boundary and possible interior constraints. Then there exists
some 𝛼0 > 0 such that 𝐴𝑖𝑠𝑜

𝑇 ,𝛼
(𝑇 ) > 𝐴𝑖𝑠𝑜

𝑇 ,𝛼
(𝑇0) for any 𝛼 < 𝛼0 and any

non-injective map 𝑇 satisfying the same constraints.

We compare the results of minimizing TLC and IsoTLC in Figure

3. The rest mesh 𝑀 is used as the auxiliary elements 𝑇 for both

energies. Observe that minimizing IsoTLC at different 𝛼 results

in injective maps with similar appearances, all with much lower

distortions than maps minimizing TLC.

2.3 Isometric SEA
Distortion analysis. To see how the SEA energy [Du et al. 2021] is

related to map distortion, consider a map𝑇 with a non-intersecting

boundary 𝜕𝑇 . According to Lemma C.1 in [Du et al. 2021], the

arc-occupancy 𝑂𝜃 (𝜕𝑇 ) reduces to the occupancy 𝑂 (𝜕𝑇 ) for any
𝜃 < 𝜃0 where 𝜃0 is a positive constant determined by 𝜕𝑇 . Since 𝜕𝑇

is non-intersecting,𝑂 (𝜕𝑇 ) is simply the area bounded by the curve,
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Figure 2: Visualizing 𝑅(𝑡) (a), 𝑅𝐼𝑠𝑜 (𝑡) at different 𝛼 values (b,c), and the penalty energy of [Garanzha et al. 2021] at different 𝜖
(d,e,f) as functions of the singular values 𝜎1, 𝜎2 of the linear transform 𝐿 from 𝑡̃ to 𝑡 (𝜎1 is given the sign of det(𝐿)). Observe that
𝑅(𝑡) is minimized by a similarity transform (𝜎1 = 𝜎2), 𝑅𝐼𝑠𝑜 (𝑡) is minimized by an isometry (𝜎1 = 𝜎2 = 1) regardless of 𝛼 , and the
minimizer of the penalty energy drifts away from isometry as 𝜖 increases.

Figure 3: Optimizing an initial map of the Bunny mesh into
a non-convex boundary by minimizing (till convergence)
the TLC energy and our IsoTLC variant (at different 𝛼). The
histograms show the triangle distortions using the measure
max(𝜎1, 1/𝜎2) (assuming 𝜎1 ≥ 𝜎2).

which equals the sum of signed triangle areas of 𝑇 . So, for such a

pair {𝑇, 𝜃 }, SEA reduces to a measure of the inverted triangle areas,

𝐴
𝑇,𝛼,𝜃

(𝑇 ) = 𝐴
𝑇,𝛼

(𝑇 ) −
∑︁
𝑡 ∈𝑇

𝐴(𝑡) =
∑︁
𝑡 ∈𝑇

𝑅(𝑡) . (10)

Here 𝑅(𝑡) is the residue defined in Equation 5, which is minimized

by a similarity transformation from the auxiliary simplex 𝑡̃ . As a

result, minimizing SEA on a mesh with an intersection-free bound-

ary tends to suppress angle distortion from the auxiliary simplicies

𝑇 , but at the cost of possibly significant area distortions (see Figure

1 right).

Energy modification. To penalize isometric distortions, we mod-

ify SEA by replacing the TLC term with the proposed IsoTLC,

𝐴𝑖𝑠𝑜

𝑇 ,𝛼,𝜃
(𝑇 ) = 𝐴𝑖𝑠𝑜

𝑇 ,𝛼
(𝑇 ) −𝑂𝜃 (𝜕𝑇 ). (11)

We call this variant the Isometric SEA (IsoSEA). Following the rea-

soning above, for any map 𝑇 with a non-intersecting boundary

and some range of small 𝜃 , IsoSEA reduces to the sum of residues

𝑅𝑖𝑠𝑜 (𝑡) over all elements 𝑡 ∈ 𝑇 . Since 𝑅𝑖𝑠𝑜 (𝑡) is minimized by an

isometry from 𝑡̃ , minimizing IsoSEA has the effect of reducing both

angle and area distortions from 𝑇 .

IsoSEA preserves the key properties of SEA. Since IsoTLC, like

TLC, is smooth over the space of all maps, IsoSEA maintains the

smoothness of SEA. Furthermore, we can show that IsoSEA inher-

its the same theoretical property as SEA: assuming an injective

constraint-satisfying map exists, and for sufficiently small 𝛼 and 𝜃 ,

IsoSEA is minimized only by a locally injective map with a bounded

total overlapping area. The property is formally stated as follows

(see proof in Supplemental Materials, Section 4):

Proposition 2.4. Let𝑇0 be an injective, triangular map satisfying
the given constraints. For any 𝜆 > 0, there exists some 𝛼0 > 0 and
𝜃0 > 0 such that, for any 𝛼 < 𝛼0, 𝜃 < 𝜃0, 𝐴𝑖𝑠𝑜

𝑇 ,𝛼,𝜃
(𝑇 ) > 𝐴𝑖𝑠𝑜

𝑇 ,𝛼,𝜃
(𝑇0)

for any map 𝑇 that is not locally injective or whose overlapping area
is greater than 𝜆.

2.4 Optimization
Our variants of TLC and SEA, like the original energies, can be read-

ily minimized using standard gradient-based methods. We imple-

mented a quasi-Newton (QN) method using an off-the-shelf BFGS

solver [Wright andNocedal 1999] for both IsoTLC and IsoSEA. Since

IsoTLC has higher-order smoothness, we adopted the projected-

Newton (PN) method in [Du et al. 2020] that ensures positive-

definiteness of the global Hessian matrix by projecting per-simplex

Hessians. We derived analytical expressions for the gradient and

(projected) Hessian of IsoTLC from the singular-value form of the

isometric lifted content (Equation 7) using the technique of [Smith

et al. 2019] (see Supplemental Materials, Section 5, for details).

Despite our theoretical analysis of map injectivity at the minima

of IsoTLC and IsoSEA, gradient-based solvers have no guarantee

of reaching the global minimum of these non-convex energies. In

practice, we adopt a two-step approach that first attempts to find

an injective map and, if successful, then lowers its distortion:

(1) Computing injective maps: Following the same strategy in

[Du et al. 2020, 2021], we first run QN until an injective map

is found, or the energy has converged, or a maximum 𝑁
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iterations is reached (we use 𝑁 = 10000). If IsoTLC is being

minimized and an injective map is not found, we repeat the

same process with PN from the initial map.

(2) Lowering distortion: If the previous step produces an injec-

tive map, we then run PN (for IsoTLC) or QN (for IsoSEA)

to continue minimizing the energy for another 𝑁 iterations

or until the energy converges. If the resulting map is non-

injective, we output the last injective map obtained during

the iterations.

3 RESULTS
We evaluate our IsoTLC and IsoSEA energies on existing bench-

marks for both fixed-boundary and free-boundary mapping, and we

compare the injectivity and distortion of the resulting maps with

existing methods. We implemented the optimization strategy in

Section 2.4 in C++. Eigen was used for matrix operations. Evaluat-

ing the arc-occupancy term in SEA and IsoSEA requires computing

the pairwise intersection of circular arcs. We follow [Du et al. 2021]

and used OpenMP to parallelize this step. More implementation

details are provided in Supplemental Materials (Section 5).

The only parameters in our method are scalars 𝛼, 𝜃 . We observed

that while a larger 𝛼 generally leads to smoother energy landscapes

and faster convergence, optimizing with a smaller 𝛼 is more likely

to reach an injective map (which is consistent with Propositions

2.3,2.4). We found that setting 𝛼 = 10
−4

in both IsoTLC and IsoSEA

and 𝜃 = 0.1 in IsoSEA maximizes the success rate in recovering

injectivity within the allowed number of iterations.

We use the rest meshes 𝑀 provided in the benchmark as the

auxiliary simplicies𝑇 , which enables both IsoTLC and IsoSEA to re-

duce isometric distortions from𝑀 . In contrast, equilateral triangles

(and tetrahedra) were used as auxiliary simplices for minimizing

TLC and SEA in [Du et al. 2020, 2021]. The choice was made to

boost the success rate in recovering injectivity, as these energies

are not concerned with map distortion.

To measure isometric distortion, we consider max(𝜎1, 1/𝜎2) in
2D and max(𝜎1, 1/𝜎3) in 3D. This measure reaches the minimum

of 1 only when 𝑡 is congruent with 𝑡̃ . We define the maximum and

average distortion of a map as the maximum and mean per-element

distortion over all elements.

3.1 Fixed-boundary mapping benchmark
We first evaluated the IsoTLC energy on the benchmark data set

in [Du et al. 2020], which consists of more than 10,000 2D exam-

ples and more than 900 3D examples of fixed-boundary mapping.

Most examples were taken from real-world parameterization and

deformation problems, but some of them are hand-crafted stress

tests such as mapping a complex mesh into the outline of a letter

(e.g., Figure 1 left). Each example comes with a rest mesh and an

initial non-injective map into a fixed boundary, and all examples

are known to have feasible (injective) solutions.

Our method achieved 100% success rate in recovering injectivity

on this benchmark. To the best of our knowledge, only the orig-

inal TLC method [Du et al. 2020] and the method of [Garanzha

et al. 2021] (which we call FFM) have passed this benchmark with

complete success. Furthermore, the maps produced by minimizing

IsoTLC exhibit much lower isometric distortion than both of these

methods. As seen in the histograms Figure 4 (a,b), both the max-

imum and average distortion of 2D maps minimizing IsoTLC are

a few orders of magnitude lower than those minimizing TLC or

produced by FFM. Similarly observations can be made for 3D maps,

except in the case of average distortion where IsoTLC and FFM are

similar.

Figure 1 left shows one example from the 2D benchmark and

compares the results of the three methods. Observe from the his-

tograms that the TLC-minimizing map contains many elements

with high distortion – up to seven orders of magnitude higher

than elements in the IsoTLC-minimizing map or that produced

by FFM. On the other hand, minimizing IsoTLC produces more

elements with lower distortion than FFM. We provide more visual

comparisons in Supplemental Materials (Section 6.1).

3.2 Free-boundary mapping benchmark
We next evaluate the IsoSEA energy on the benchmark data set of

[Du et al. 2021], which consists of nearly 1800 examples of map-

ping triangular meshes onto the plane with arbitrary positional

constraints. Each example comes with a rest mesh (a triangular

mesh in 3D), a constraint set of up to 20 vertices and their desig-

nated locations in the plane, and an initial map that satisfies those

constraints but contains inverted or overlapping triangles. As in

the fixed-boundary benchmark, each example in this benchmark

has a feasible (injective and constraint-satisfying) solution.

Our method successfully recovered injectivity for 82% of exam-

ples in this challenging benchmark. This rate is slightly lower than

the original SEA method [Du et al. 2021], which was successful on

85% of examples. Figure 5 examines two examples, one on which

SEA succeeded but IsoSEA failed, and one on which IsoSEA suc-

ceeded but SEA failed. In the former case, the IsoSEA failure was

caused by two parts of the mesh deeply crossing each other, which

is a typical situation of slow convergence for both IsoSEA and SEA

(see an illustrative example in Figure 15 of [Du et al. 2021]). In the

latter case, the SEA failure was caused by several extremely small

inverted triangles, a consequence of high isometric distortions. In

contrast, by promoting isometry, IsoSEA successfully resolved all

inverted triangles in this region in the initial map. Note that both

methods were significantly more successful than previous methods

designed to suppress only inverted triangles, such as [Fu and Liu

2016] and [Kovalsky et al. 2015], which recovered injectivity for

less than 4% of examples in this benchmark as reported in [Du et al.

2021].

For those benchmark examples where both SEA and IsoSEA suc-

cessfully produced injective maps, maps minimizing our IsoSEA

energy exhibited significantly reduced isometric distortion than

those minimizing SEA, as shown in the histograms of Figure 4

(c). Figure 1 right visually compares the results of the two meth-

ods on one example from the benchmark. Observe from the his-

tograms that the SEA-minimizing map contains elements with up

to two orders of magnitude higher distortion than elements in the

IsoSEA-minimizing map. We provide more visual comparisons in

Supplemental Materials (Section 6.1).
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Figure 4: Histograms (in log-log scale) of maximum (top) and average (bottom) distortion of maps computed by different
methods on the fixed-boundary 2D (a) and 3D (b) benchmarks and the free-boundary benchmark (c) (only including examples
where both SEA and IsoSEA succeeded in recovering injectivity).

Figure 5: Examples from the fixed-boundary benchmark
where SEA succeeded in recovering injectivity from the ini-
tial map but IsoSEA failed (top) or vice versa (bottom). Top
inserts: a region where IsoSEA produces boundary intersec-
tions (orange). Bottom inserts: a region where SEA results in
inverted triangles (red).

3.3 Performance
We report the running time of our algorithm on the fixed-boundary

and free-boundary benchmarks as a function of mesh size in Figure

6. The timing was recorded on a Intel Core i9 CPU at 3.7GHz with

64 GB memory. We also separately report the timing for the first

stage of our algorithm (computing an injective mesh).

Observe that the complexity of our algorithm generally grows

with the mesh size. IsoSEA takes much longer to minimize than

IsoTLC, as it needs to compute the arrangement of the boundary

curve for the arc-occupancy term. These timings are similar to those

of minimizing TLC and SEA as reported in [Du et al. 2020, 2021]

and are comparable to those of [Garanzha et al. 2021] on the fixed-

boundary benchmark. Finally, note that the second stage of our

algorithm (lowering distortion of an already injective map) usually

takes much longer than the first stage, since it only terminates at

energy convergence or the maximum number of iterations.

Figure 6: Running time (seconds in log scale) versusmesh size
(number of vertices) for all examples in the fixed-boundary
2D and 3D benchmarks and the free-boundary benchmark.
Orange dots are times of the entire algorithm while blue dots
are times of the first stage (computing injective maps).

3.4 Initializing map optimization
With the ability to produce injective maps satisfying positional

constrains, our method as well as [Du et al. 2020, 2021; Garanzha

et al. 2021] can serve as the starting point for many existing con-

strained map optimization methods that require an injective initial

mesh. Most of these optimization methods require computing the

gradient or Hessians of some non-linear energy. Such computa-

tion may encounter numerical issues if the elements are too small,

which in turn leads to slow or stalled convergence. As a result, the

lower isometric distortions offered by our method can improve the

convergence of these optimization methods.

As an example, we compare TLC and IsoTLC as initializers for

fixed-boundary map optimization in Figure 7. Minimization TLC

from an initially non-injective map (from Lucy to letter G) recovers

an injective mesh with many extremely small triangles (as seen in

the histogram of per-element distortion). Further optimizing this

map by minimizing the Symmetric Dirichlet energy [Smith and

Schaefer 2015] using a standard method [Zhu et al. 2018b], while

keeping the boundary fixed, terminates after just a few iterations

due to divergent energy and fails to improve upon the TLC result.

Similar failures were observed on 6 out of the 30 examples from the

benchmark of [Du et al. 2020] that map 3D surfaces to letter-like

2D domains. In contrast, IsoTLC minimization yields an injective

map with much lower distortions, and further optimization of the

Symmetric Dirichlet energy was able to converge with an even

lower isometric distortion.
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Figure 7: Comparing maps produced by minimizing TLC
and IsoTLC (mapping Lucy to letter G) as initialization for
constrained optimization in BCQN [Zhu et al. 2018b] that
minimizes the Symmetric Dirichlet energy. With the TLC
map as the starting point, BCQN terminates in 4 iterations
and the map remains highly distorted.

4 DISCUSSION
While we have improved the distortion aspect of existing ener-

gies, TLC [Du et al. 2020] and SEA [Du et al. 2021], our energies

retain some of their limitations. First, the rate of convergence of

our energies may be strongly affected by the choice of the initial

map, and our method may fail to produce injective maps within the

allotted number of iterations for pathological initializations (see

the TLC failure in Figure 5 of [Garanzha et al. 2021] and SEA failure

in Figure 16 of [Du et al. 2021]; more IsoTLC failure examples are

provided in Supplemental Materials, Section 6.2). Second, like SEA,

our IsoSEA energy exhibits slow convergence when mesh parts

deeply cross each other (Figure 5), which accounts for majority

of our failure cases in the free-boundary benchmark. Third, our

methods cannot produce injective maps for problems that do not

have a feasible solution (see examples in Supplemental Materials,

Section 6.2). Some potential directions for improving the conver-

gence rate include adapting the parameters 𝛼, 𝜃 to either the mesh

elements or the stage of optimization (as done in [Garanzha et al.

2021]) and designing higher-order variants of the arc-occupancy

term in IsoSEA.
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