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This document completes the derivations and proofs absent from the main paper (Sections 1-4), and
provides additional implementation details (Section 5) and experimental results (Section 6).

1 Singular value formula for lifted content

We will derive the alternative formula of lifted content (Equation 4 in the paper). Given two d-dimensional
simplices t, t̃ (t̃ has positive d-dimensional volume) and scalar α > 0, the lifted content of t is defined as:

At̃,α(t) =
1

d!

√
det(XTX + αX̃T X̃) (1)

where X, X̃ are the edge (column) vectors of t, t̃ respectively.

Let L be the linear transformation that maps t̃ to t, that is, L = XX̃−1 (note that X̃ is always invertible
because t̃ has positive content). Applying Sylvester’s Theorem to the determinant inside the square root
yields:

det(XTX + αX̃T X̃) = det(αX̃T X̃) det(Id +
1

α
XX̃−1(X̃T )−1XT )

= det(X̃T X̃) det(αId +XX̃−1(X̃−1)TXT )

= det(X̃T X̃) det(αId + LLT )

(2)

where Id is the d×d identity matrix. Consider the singular value decomposition L = UΣV T , where U, V are
orthonormal matrices and Σ is a diagonal matrix whose diagonal entries are the singular values {σ1, . . . , σd}.
We can simplify the last determinant in Equation 2 as:

det(αId + LLT ) = det(αId + UΣV TV ΣTUT )

= det(U(αId)U
T + UΣΣTUT )

= det(U(αId +ΣΣT )UT )

= det(U) det(αId +ΣΣT ) det(UT )

= det(αId +ΣΣT )

= Πd
i=1(σ

2
i + α)

(3)

The last equality holds because αId+ΣΣT is a diagonal matrix whose diagonal values are {σ2
1+α, . . . , σ

2
d+α}.

Substituting Equation 3 into Equation 2 and then into Equation 1 yields:

At̃,α(t) =
1

d!

√
det(X̃T X̃)Πd

i=1(σ
2
i + α)

= At̃

√
Πd

i=1(σ
2
i + α)

(4)

where At̃ is the volume of t̃.
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2 Minimizer of residue functions

We will prove Propositions 2.1 and 2.2 in the paper regarding the minimizer of functions R(t) and Riso(t).
Recall that R(t) is the residue of the lifted content At̃,α(t) of a simplex t after subtracting the signed volume
A(t), and it has the form (Equation 5 in the paper):

R(t) = At̃(
√
Πd

i=1(σ
2
i + α)− det(L)). (5)

Similarly, Riso(t) is the residue of the isometric lifted content Aiso
t̃,α

(t) after subtracting A(t), and it has the

form (Equation 8 in the paper):

Riso(t) = At̃(

√
Πd

i=1σ
2
i +

α

2d−1
Πd

i=1(σ
2
i + 1) + α2 − det(L)). (6)

We first prove that R(t) is minimized by similarity transformations in 2D and a singular transformation
in higher dimensions:

Proposition 2.1 (Proposition 2.1 in paper). For any α > 0, R(t) ≥ α
d
2At̃. Equality holds when either of

the following holds:

1. d = 2, σ1 = σ2 and det(L) ≥ 0.

2. d > 2 and σ1 = . . . = σd = 0.

Proof. Using the definition of R(t) in Equation 5, and since At̃ > 0, we only need to show that√
Πd

i=1(σ
2
i + α) ≥ det(L) + α

d
2 (7)

We first consider the case of d = 2. The lhs of Equation 7 becomes:√
(σ2

1 + α)(σ2
2 + α) =

√
(σ1σ2 + α)2 + α(σ2

1 + σ2
2 − 2σ1σ2)

≥
√
(σ1σ2 + α)2

= σ1σ2 + α

= |det(L)|+ α

≥ det(L) + α

The first inequality becomes equality when σ1 = σ2, and the second inequality becomes equality when
det(L) ≥ 0.

Now consider d ≥ 3, which we split into two cases.

1. Suppose Πd
i=1σi = 0 (and hence det(L) = 0). It follows that:√

Πd
i=1(σ

2
i + α) ≥

√
αd = det(L) + α

d
2

The inequality becomes equality only when σ1 = . . . = σd = 0.
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2. Now suppose Πd
i=1σi > 0. We can drive from the lhs of Equation 7 that:

√
Πd

i=1(σ
2
i + α) ≥

√√√√(Πd
i=1σi)

2 + αd + αd−1

d∑
i=1

σ2
i + α

d∑
i=1

Πd
j=1σ

2
j

σ2
i

=

√√√√(Πd
i=1σi + α

d
2 )2 − 2α

d
2Πd

i=1σi + α
d
2

(
Πd

i=1σi
) d∑
i=1

(
α

d
2−1σ2

i

Πd
j=1σj

+
Πd

j=1σj

α
d
2−1σ2

i

)

=

√√√√(Πd
i=1σi + α

d
2 )2 + α

d
2

(
Πd

i=1σi
)( d∑

i=1

(
α

d
2−1σ2

i

Πd
j=1σj

+
Πd

j=1σj

α
d
2−1σ2

i

)− 2

)

≥
√
(Πd

i=1σi + α
d
2 )2 + α

d
2

(
Πd

i=1σi
)
(2d− 2)

>

√
(Πd

i=1σi + α
d
2 )2

= |det(L)|+ α
d
2

≥ det(L) + α
d
2

The second inequality is due to the fact that x+ 1
x ≥ 2 for any positive x.

Combining the two cases, we have prove Equation 7 for d ≥ 3. In particular, the equality holds only in the
first case, that is, when σ1 = . . . = σd = 0.

We next prove that Riso(t) is minimized by an isometry in any dimensions:

Proposition 2.2 (Proposition 2.2 in paper). For any α > 0, Riso(t) ≥ αAt̃, and equality holds only when
σ1 = . . . = σd = 1 and det(L) > 0.

Proof. Using the definition of Riso(t) in Equation 6, and since At̃ > 0, we need to show that√
Πd

i=1σ
2
i +

α

2d−1
Πd

i=1(σ
2
i + 1) + α2 ≥ det(L) + α (8)

We consider two cases for any d ≥ 2:

1. Suppose Πd
i=1σi = 0 (and hence det(L) = 0). The lhs of Equation 8 becomes:√

α

2d−1
Πd

i=1(σ
2
i + 1) + α2 > α = det(L) + α

Note that the inequality is strict, because the first term under the square root is always positive.

2. Now suppose Πd
i=1σi > 0. We have the following derivation from the lhs of Equation 8:√

Πd
i=1σ

2
i +

α

2d−1
Πd

i=1(σ
2
i + 1) + α2 =

√
(Πd

i=1σi + α)2 − 2αΠd
i=1σi +

α

2d−1
Πd

i=1(σ
2
i + 1)

=

√
(Πd

i=1σi + α)2 + 2α
(
Πd

i=1σi
)( 1

2d
Πd

i=1(σi +
1

σi
)− 1

)
≥
√
(Πd

i=1σi + α)2

= Πd
i=1σi + α

= |det(L)|+ α

≥ det(L) + α

The second inequality is again due to the fact that x+ 1
x ≥ 2 for any positive x, and it becomes equality

when σ1 = . . . = σd = 1, which turns the last inequality into equality as well.

We conclude from both cases that Equation 8 holds for all d ≥ 2, and it becomes equality only when
σ1 = . . . = σd = 1.
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3 Injectivity of IsoTLC minimizer

We will prove Proposition 2.3 in the paper on the injectivity of the energy minimizer of IsoTLC. Recall that
the isometric lifted content of a simplex t, given the auxiliary simplex t̃ and scalar α, has the following form
(Equation 6 in the paper),

Aiso
t̃,α

(t) =

√
A(t)2 +

α

2d−1
At̃,1(t)

2 + α2A2
t̃
, (9)

where At̃,1(t) is the lifted content of t at scale 1. The Isometric Total Lifted Content (IsoTLC) for a mesh

T , given auxiliary elements T̃ and scalar α, is the sum,

Aiso
T̃ ,α

(T ) =
∑
t∈T

Aiso
t̃,α

(t). (10)

We start with a lemma:

Lemma 3.1. The following holds for all α ≥ 0:

1. Aiso
t̃,α

(t) ≥ |A(t)|, and equality holds when α = 0.

2. The derivative
∂Aiso

t̃,α
(t)

∂α is finite and positive if either A(t) ̸= 0 or α ̸= 0.

Proof. Statement (1) is straightforward from Equation 9 by noting that the second and third terms under the
square root are non-negative and zero only when α = 0. For (2), substituting Equation 9 into the derivative
gives:

∂Aiso
t̃,α

(t)

∂α
=

At̃,1(t)
2

2d−1 + 2αA2
t̃

2
√
A(t)2 + α

2d−1At̃,1(t)
2 + α2A2

t̃

(11)

Assuming that either A(t) ̸= 0 or α ̸= 0, the denominator of the rhs is non-zero, and hence the derivative is
well-defined. Also, since the lifted content At̃,1(t) is always positive, the numerator is strictly positive, and
so is the derivative.

We next prove a lemma that plays the same role as Lemma B.3 (2D) or B.7 (3D) in [1] in their proof of
the injectivity of TLC minimizer. Unlike TLC, where the statement requires different proofs in 2D and 3D
and the validity of the statement is unknown in higher dimensions, our statement on IsoTLC applies to any
dimension d ≥ 2.

Lemma 3.2. For any δ > 0, there exists some ϵ > 0 and β > 0 such that if a map T contains an element
whose unsigned volume is smaller than ϵ, then for any positive α < β, ∂Aiso

T̃ ,α
(T )/∂α > δ.

Proof. Consider a single element t ∈ T . Using the lifted content formula of Equation 4, we have

At̃,1(t) = At̃

√
Πd

i=1(σ
2
i + 1) ≥ At̃

Using this inequality, we can derive from the derivative formula of Equation 11 for any α > 0:

∂Aiso
t̃,α

(t)

∂α
>

At̃,1(t)
2

2d
√
A(t)2 + α

2d−1At̃,1(t)
2 + α2A2

t̃

=
1

2d
√

A(t)2

At̃,1(t)
4 + α

2d−1At̃,1(t)
2 +

α2A2
t̃

At̃,1(t)
4

≥ 1

2d
√

A(t)2

A4
t̃

+ α
2d−1A2

t̃

+
α2A2

t̃

A4
t̃

=
A2

t̃

2d
√
A(t)2 +A2

t̃
( α
2d−1 + α2)
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For any δ > 0, we can find ϵ > 0, β > 0 that satisfies:

ϵ2 +A2
t̃
(
β

2d−1
+ β2) =

A4
t̃

22dδ2

If |A(t)| < ϵ and α ∈ (0, β), we conclude that:

∂Aiso
t̃,α

(t)

∂α
>

A2
t̃

2d
√
A(t)2 +A2

t̃
( α
2d−1 + α2)

>
A2

t̃

2d
√
ϵ2 +A2

t̃
( β
2d−1 + β2)

= δ

Finally, let t0 be an element of T such that |A(t0)| < ϵ. Combining the inequality above and Lemma 3.1 (2)
yields the desired inequality for all α ∈ (0, β),

∂Aiso
T̃ ,α

(T )

∂α
=
∑
t∈T

∂Aiso
t̃,α

(t)

∂α
>
∂Aiso

t̃0,α
(t0)

∂α
> δ

Finally, we prove the main result for any d ≥ 2:

Proposition 3.3 (Proposition 2.3 in the paper). Let T0 be an injective map with a fully constrained boundary
and possible interior constraints. Then there exists some α0 > 0 such that Aiso

T̃ ,α
(T ) > Aiso

T̃ ,α
(T0) for any

α < α0 and any non-injective map T satisfying the same constraints.

Proof. The proof closely follows that of Proposition 4.3 in [1]. Since T0 is injective, so is the boundary map
∂T0 from ∂M . By [6], a map T whose boundary is the same as ∂T0 is injective if and only if T has no
degenerate or inverted elements. In the following, we assume that an arbitrary but fixed set of auxiliary
elements T̃ is used. For notational convenience, we shall drop the subscript T̃ in Aiso

T̃ ,α
.

By Lemma 3.1 (2), and since T0 is injective, the derivative ∂Aiso
α (T0)/∂α is bounded. We shall pick an

arbitrary but small positive value τ , and define δ as the maximum derivative for all α < τ .
Now suppose T has an element whose unsigned volume is smaller than ϵ, which is found by Lemma 3.2

for δ. By that lemma, there exists some β > 0 such that for any α < β, ∂Aiso
α (T )/∂α > δ. As a result, the

following holds for all α < min(τ, β):

∂(Aiso
α (T )−Aiso

α (T0))

∂α
=
∂Aiso

α (T )

∂α
− ∂Aiso

α (T0)

∂α
> δ − δ = 0

Furthermore, by Lemma 3.1 (a), Aiso
0 (T ) is the total unsigned volume of T , which is no smaller than the

total unsigned volume of T0, or A
iso
0 (T0). Thus we conclude Aiso

α (T ) > Aiso
α (T0) for any α ∈ (0,min(τ, β)).

Otherwise, suppose T has no element whose unsigned volume is smaller than ϵ. Since T is non-injective,
it must contain no degenerate element and at least one inverted element whose unsigned volume is at least
ϵ. Due to Lemma 3.1 (1), for any α > 0,

Aiso
α (T ) >

∑
t∈T

|A(t)| ≥
∑
t∈T

A(t) + 2ϵ = Aiso
0 (T0) + 2ϵ

Since the derivative ∂Aiso
α (T0)/∂α is bounded (Lemma 3.2), there exists some κ > 0 such that, for all α < κ,

Aiso
α (T0) < Aiso

0 (T0) + 2ϵ < Aiso
α (T )

The proof is completed by letting α0 = min(τ, β, κ).
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4 Injectivity of IsoSEA minimizer

Lastly, we will prove Proposition 2.4 in the paper on the injectivity of the energy minimizer of IsoSEA. Recall
that the Isometric Smooth Excess Area (IsoSEA) of a triangular mesh T , given the auxiliary simplicies T̃
and scalars α, θ, has the following form (Equation 11 in the paper):

Aiso
T̃ ,α,θ

(T ) = Aiso
T̃ ,α

(T )−Oθ(∂T ). (12)

where Aiso
T̃ ,α

(T ) is the IsoTLC of T and Oθ(∂T ) is the arc-occupancy of the boundary ∂T defined as follows.

Recall that the occupancy O(C) of a closed curve C is the area of the plane with a positive winding number
w.r.t. C. Let Cθ be a curve constructed by replacing each edge of ∂T by an arc with center angle θ. The
arc-occupancy Oθ(∂T ) is defined as the occupancy of Cθ subtracted by the total area of the regions each
bounded by an edge of ∂T and its arc in Cθ.

We first recall a few useful properties of the excess area of T defined as the difference:

Aexcess(T ) =
∑
t∈T

|A(t)| −O(∂T )

Furthermore, let Aoverlap(T ) be the total overlapping area defined as the difference between the total unsigned
area of triangles in T and the area of the plane covered by T , and let Ainvert(T ) be the total area of inverted
triangles in T . The following result from [2] shows that the excess area is a good proxy of both the overlapping
and inverted area:

Lemma 4.1 (Proposition 5.1 in [2]). For any map T ,

1. Aexcess(T ) ≥ Aoverlap(T )

2. Aexcess(T ) ≥ Ainvert(T )

3. Aexcess(T ) ≤ Aoverlap(T ) +Ainvert(T )

Using these results, we prove a property of IsoSEA similar to that of SEA in Proposition 5.2 of [2]:

Lemma 4.2. For any map T , α ≥ 0 and θ > 0, Aiso
T̃ ,α,θ

(T ) ≥ Aexcess(T ). Furthermore, if T is injective,

there exists some θ0 > 0 such that Aiso
T̃ ,0,θ

(T ) = 0 for all θ < θ0.

Proof. The proof of Proposition 5.2 in [2] utilizes Lemma 4.1 and the fact that TLC is an upper bound of
the total unsigned area, that is, AT̃ ,α(T ) ≥

∑
t∈T |A(t)|. Since the same property holds for IsoTLC (Lemma

3.1 (1)), the rest of the proof follows.

Next, we introduce a variant of Lemma 3.2 that concerns maps containing triangles with large angle
distortions. Let Dt̃(t) be the Dirichlet energy of the transformation from a triangle t back to its auxiliary
triangle t̃, which has the form [7] (utilizing the fact that the singular values of this inverse transform are
reciprocals of σ1, σ2, the singular values of the transform from t̃ to t):

Dt̃(t) =
|A(t)|
2

(
1

σ2
1

+
1

σ2
2

) =
At̃

2
(
σ2
1 + σ2

2

σ1σ2
) (13)

The second equality comes from |A(t)| = At̃σ1σ2. Note that the energy is minimal when σ1 = σ2 (no angle
distortion).

Lemma 4.3. For any δ > 0, there exists some η > 0 and γ > 0 such that if a map T has no degenerate
triangle but contains a triangle t such that Dt̃(t) > η, then for any positive α < γ, ∂Aiso

T̃ ,α
(T )/∂α > δ.

Proof. Consider a single element t ∈ T (A(t) ̸= 0 by assumption). We first derive the following inequality
using equality |A(t)| = At̃σ1σ2 and Equations 4 and 13,

A2
t̃,1
(t)

|A(t)|
=
A2

t̃
(σ2

1 + 1)(σ2
2 + 1)

At̃σ1σ2
>
At̃(σ

2
1 + σ2

2)

σ1σ2
= 2Dt̃(t).
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Recall from the proof of Lemma 3.2 that, for any α > 0:

∂Aiso
t̃,α

(t)

∂α
>

1

2d
√

A(t)2

At̃,1(t)
4 + α

2d−1At̃,1(t)
2 +

α2A2
t̃

At̃,1(t)
4

Continuing the derivation using the inequalities
A2

t̃,1
(t)

|A(t)| > 2Dt̃(t) and At̃,1(t) > At̃ yields

∂Aiso
t̃,α

(t)

∂α
>

1

2d
√

1
4D2

t̃
(t)

+ α
2d−1A2

t̃

+
α2A2

t̃

A4
t̃

=
At̃

2d
√

A2
t̃

4D2
t̃
(t)

+ α
2d−1 + α2

For any δ > 0, we can find η > 0, γ > 0 that satisfies:

A2
t̃

4η2
+

γ

2d−1
+ γ2 =

A2
t̃

22dδ2

If Dt̃(t) > η and α ∈ (0, γ), we conclude that:

∂Aiso
t̃,α

(t)

∂α
>

At̃

2d
√

A2
t̃

4D2
t̃
(t)

+ α
2d−1 + α2

>
At̃

2d
√

A2
t̃

4η2 + γ
2d−1 + γ2

= δ

Finally, let t0 be an element of T such that Dt̃0
(t0) > η. Combining the inequality above and Lemma 3.1

(2) yields the desired inequality for all α ∈ (0, γ),

∂Aiso
T̃ ,α

(T )

∂α
=
∑
t∈T

∂Aiso
t̃,α

(t)

∂α
>
∂Aiso

t̃0,α
(t0)

∂α
> δ

We will also need the following result from [2]. It gives a lower bound of the overlapping area around an
overwound vertex as a function of the minimum triangle area and maximum per-triangle Dirichlet energy.

Lemma 4.4 (Lemma D.4 in [2]). If map T contains an interior vertex v such that v is incident to only
triangles with positive areas and the sum of angles around v is not 2π, then Aoverlap(T ) ≥ ϵh2π/2η, where ϵ
is the minimum unsigned area of any triangle in T , h is the shortest height of any auxiliary triangle in T̃ ,
and η is the maximum Dt̃(t) in any t ∈ T .

We are ready to prove the main result:

Proposition 4.5 (Proposition 2.4 in the paper). Let T0 be an injective, triangular map satisfying the given
constraints. For any λ > 0, there exists some α0 > 0 and θ0 > 0 such that, for any α < α0, θ < θ0,
Aiso

T̃ ,α,θ
(T ) > Aiso

T̃ ,α,θ
(T0) for any map T that is not locally injective or whose overlapping area is greater than

λ.

Proof. The proof closely follows that of Proposition 5.3 in [2]. In the following, we assume that an arbitrary

but fixed set of auxiliary triangles T̃ is used. Also, since T0 is injective, by Lemma 4.2, there exists some
θ0 > 0 such that Aiso

T̃ ,0,θ
(T0) = 0 for all θ < θ0. In the following, we consider some fixed θ in this range. For

notational convenience, we shall shorthand Aiso
T̃ ,α,θ

as Aiso
α (not to be confused with IsoTLC).

Since arc-occupancy does not depend on α, IsoSEA shares the same partial derivative as IsoTLC with
respect to α, and previous results regarding the derivative of IsoTLC (e.g., Lemma 3.1 (2)) applies to IsoSEA
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too. In particular, since T0 is injective, the derivative ∂Aiso
α (T0)/∂α is always bounded. We pick an arbitrary

but small positive value τ , and let δ be the maximum value of the derivative for all α < τ .
Now consider a map T that is not locally injective, or that Aoverlap(T ) > λ. We separately consider the

cases that (1) T has some small-area triangle (including degenerate triangles), (2) T has some triangle with
large Dirichlet energy, and (3) T has neither.

1. Suppose T has a triangle whose unsigned area is smaller than ϵ, which is found by Lemma 3.2 for δ.
This case is already considered in the proof of Proposition 3.3, which shows that there exists some
β > 0 such that for any α < min(β, τ), ∂Aiso

α (T )/∂α > ∂Aiso
α (T0)/∂α. On the other hand, by Lemma

4.2, Aiso
0 (T ) ≥ 0 = Aiso

0 (T0). Hence Aiso
α (T ) > Aiso

α (T0) for any α < min(β, τ).

2. Suppose all triangles in T have unsigned areas no smaller than ϵ, but at least one triangle has a Dirichlet
energy greater than η, which is found by Lemma 4.3 for δ. By the lemma, and similar to the case
above, there exists some γ > 0 such that Aiso

α (T ) > Aiso
α (T0) for any α < min(γ, τ).

3. Suppose the triangles of T have neither small unsigned areas nor large Dirichlet energy. We further
split this case into three sub-cases:

� T has some inverted triangle. Since each inverted triangle must have an unsigned area no smaller
than ϵ, by Lemmas 4.1 and 4.2, Aiso

α (T ) ≥ Aexcess(T ) ≥ Ainvert(T ) ≥ ϵ for any α ≥ 0. Since
Aiso

0 (T0) = 0 and the partial derivative ∂Aiso
α (T0)/∂α is bounded, we conclude that there exists

some κ1 > 0 such that, for all α < κ1, A
iso
α (T0) < ϵ ≤ Aiso

α (T ).

� T has no inverted (or degenerate) triangle, but some vertex v has an angle sum other than 2π.
By Lemma 4.4, Aoverlap(T ) ≥ σ = ϵh2π/4η, where h is the smallest height among all auxiliary
triangles, and ϵ, η are constants found in cases (1,2) above. Note that σ, like ϵ and η, is independent
of the map T . Following Lemmas 4.1 and 4.2, Aiso

α (T ) ≥ Aexcess(T ) ≥ Aoverlap(T ) ≥ σ for any
α ≥ 0. Similar to the previous sub-case, there exists some κ2 > 0 such that, for all α < κ2,
Aiso

α (T0) < σ ≤ Aiso
α (T ).

� T is locally injective but Aoverlap(T ) > λ. Similar to the previous sub-case, there exists some
κ3 > 0 such that, for all α < κ3, A

iso
α (T0) < λ < Aiso

α (T ).

The proof is completed by setting α0 = min(τ, β, γ, κ1, κ2, κ3).

5 Implementation details

Minimizing IsoTLC and IsoSEA using gradient-based solvers requires the evaluation of the energies, their
gradients (for quasi-Newton), and Hessians (for projected Newton). We provide more implementation details
in this section.

5.1 IsoTLC

Evaluating IsoTLC amounts to summing up the per-element isometric lifted content, defined in Equation 6
in the paper, which in turn can be directly obtained from the area (or volume) of the d-dimensional element
t, the auxiliary element t̃, and the lifted element. In particular, as derived in [1] (Section 4.2.1), the area (or
volume) of the lifted element at scale α has the form:

At̃,α(t) =
1

d!

√
Det(XTX + αX̃T X̃)

where X (respectively X̃) is the d× d matrix whose column vectors are the edge vectors from one vertex of
the simplex t (respectively t̃) to the other d vertices of the simplex.

To derive the gradient and Hessian of IsoTLC, we resort to the general technique proposed by Smith et
al. [8] for distortion energies in both 2D or 3D. We shall give details on the application of this technique to
IsoTLC, and we refer the reader to the paper [8] and a comprehensive course note [4] for in-depth discussions
of the general technique.
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Smith’s technique assumes distortion energies of the general form

Ψ(T ) =
∑
t∈T

At̃Ψt̃(L)

Here, At̃Ψt̃(L) is the per-simplex distortion Ψt̃(L) weighted by the area (or volume) of the rest (auxiliary)
simplex t̃. The distortion is defined using L, which is the linear transformation that maps the edge vectors
X̃ of t̃ to the edge vectors X of t. L is often called the deformation gradient. Smith’s technique applies to
any distortion Ψt̃ that can be written in terms of three invariants:

I1 =
∑
i

σi, I2 =
∑
i

σ2
i , I3 =

∏
i

σi (14)

where σi are the singular values of L.
The per-simplex term in IsoTLC is the isometric lifted content, Aiso

t̃,α
(t). From its singular-value form

(Equation 7 in the paper), we obtain
Aiso

t̃,α
(t) = At̃Ψt̃,α(L), (15)

where

Ψt̃,α(L) =

√
Πd

i=1σ
2
i +

α

2d−1
Πd

i=1(σ
2
i + 1) + α2. (16)

We can rewrite Equation 16 in terms of the invariants in Equations 14 for a triangle (d = 2),

Ψt̃,α(L) =

√
(1 +

α

2
)I23 +

α

2
I2 +

α

2
+ α2, (17)

and for a tetrahedron (d = 3),

Ψt̃,α(L) =

√
(1 +

α

4
)I23 +

α

4
I2 +

α

8
(I22 − IIC) +

α

4
+ α2, (18)

where IIC = ||LTL||2 can also be expressed in terms of the invariants (see Appendix A of [8]),

IIC =
1

2
I22 −

1

2
I41 + I21I2 + 4I1I3.

To evaluate the gradient of the isometric lifted content, Aiso
t̃,α

(t), we flatten t’s vertex coordinates into a

vector xxx and apply the chain rule,

∂Aiso
t̃,α

∂xxx
= At̃

∂Ψt̃,α

∂L

∂L

∂xxx
= At̃(

3∑
i=1

∂Ψt̃,α

∂Ii

∂Ii
∂L

)
∂L

∂xxx
. (19)

Since Ψt̃,α is a scalar function of the three invariants, the explicit formula for its partial derivatives
∂Ψt̃,α

∂Ii

can be obtained using calculus. The formulas for ∂Ii
∂L are provided in [8] and Appendix B of [4]. Finally,

Appendix E of [4] describes how to compute ∂L
∂xxx .

Optimizing IsoTLC using projected Newton requires a positive semi-definite (PSD) projection of the
Hessian. One approach is first evaluating the Hessian matrix of the isometric lifted content Aiso

t̃,α
(t) for each

simplex, then numerically projecting it to be positive semi-definite, and finally assembling the full Hessian
by accumulating per-simplex Hessians. Smith et al. [8] introduced a general routine to obtain per-simplex
PSD-projected Hessian without first evaluating the original Hessian matrix, provided that the distortion
energy can be written in terms of the three invariants. The routine is described in details in [8] and chapter
7 of [4]. In practice, we found that using the projected Hessian of the residual Riso(t) instead of Aiso

t̃,α
(t)

leads to a higher success rate and lower distortions on the benchmark. Recall that Riso(t) is the difference
between the isometric lifted content Aiso

t̃,α
(t) and the signed volume A(t) (Equation 8 in the paper). The

residual can also be written in terms of the three invariants in 2D,

Riso(t) = At̃(

√
(1 +

α

2
)I23 +

α

2
I2 +

α

2
+ α2 − I3), (20)

9



and in 3D,

Riso(t) = At̃(

√
(1 +

α

4
)I23 +

α

4
I2 +

α

8
(I22 − IIC) +

α

4
+ α2 − I3). (21)

We provide the pseudo-code to evaluate projected Hessians of the residual Riso(t) in 2D (Algorithm 1) and
3D (Algorithm 2) using the technique in [8].

Algorithm 1 Evaluate projected Hessian of the residual Riso(t) in 2D

Require: α, coordinates x̃xx of t̃, coordinates xxx of t
1: L← deformationGradient(x̃xx,xxx) ▷ See Appendix D of [4] for computing L
2: U,Σ, V ← SVD(L) ▷ Rotation-variant SVD, see Appendix F of [4]
3: σ1, σ2 ← diagonal(Σ)
4: I1 ← σ1 + σ2
5: I2 ← σ2

1 + σ2
2

6: I3 ← σ1σ2

7: ψ ←
√
(1 + α

2 )I
2
3 + α

2 I2 +
α
2 + α2 ▷ At̃ψ is the isometric lifted content

8: λtwist ← (α2 + (1 + α
2 )I3)/ψ − 1

9: vtwist ← vec( 1√
2
U

[
0 −1
1 0

]
V ⊤) ▷ vec(.) flattens a matrix into a vector. See section 3 of [8]

10: λflip ← (α2 − (1 + α
2 )I3)/ψ + 1

11: vflip ← vec( 1√
2
U

[
0 1
1 0

]
V ⊤)

12: d1 ← vec(U

[
1 0
0 0

]
V ⊤)

13: d2 ← vec(U

[
0 0
0 1

]
V ⊤)

14: a11 ← (α2 + α2 + α
2 σ

2
2)(

α
2 + (1 + α

2 )σ
2
2)/ψ

3

15: a22 ← (α2 + α2 + α
2 σ

2
1)(

α
2 + (1 + α

2 )σ
2
1)/ψ

3

16: a12 ← (α+ 9
4α

2 + α3 + (1 + α
2 )(

α
2 I2 + (1 + α

2 )I
2
3 ))I3/ψ

3 − 1
17: if a12 = 0 then
18: λscale1 ← a11
19: λscale2 ← a22
20: vscale1 ← d1
21: vscale2 ← d2
22: else

23: A←
[
a11 a12
a12 a22

]
24: λscale1 , λscale2 ← eigenValues(A)
25: β ← (λscale1 − a22)/a12
26: vscale1 ← (βd1 + d2)/

√
1 + β2

27: vscale2 ← (d1 − βd2)/
√

1 + β2

28: end if
29: HL ←

∑
i∈{twist,flip,scale1,scale2} max(λi, 0)viv

⊤
i

30: Hxxx ← area(x̃xx)(∂L∂xxx )
⊤HL

∂L
∂xxx ▷ See Appendix E of [4] for computing ∂L

∂xxx
31: return Hxxx

5.2 IsoSEA

The IsoSEA energy is the difference between the IsoTLC energy and the arc-occupancy of the boundary of
the mapped domain. This latter term was proposed in [2], which gave a detailed account of its derivation
(Section 5.2) and computation (Section 6). Here we give an abbreviated account of arc-occupancy, and we
refer readers to [2] for a full discussion.
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Algorithm 2 Evaluate projected Hessian of the residual Riso(t) in 3D

Require: α, coordinates x̃xx of t̃, coordinates xxx of t
1: L← deformationGradient(x̃xx,xxx) ▷ See Appendix D of [4] for computing L
2: U,Σ, V ← SVD(L) ▷ Rotation-variant SVD, see Appendix F of [4]
3: σ1, σ2, σ3 ← diagonal(Σ)
4: I1 ← σ1 + σ2 + σ3
5: I2 ← σ2

1 + σ2
2 + σ2

3

6: I3 ← σ1σ2σ3
7: IIC ← σ4

1 + σ4
2 + σ4

3

8: II∗C ← σ2
1σ

2
2 + σ2

1σ
2
3 + σ2

2σ
2
3

9: ψ ←
√
(1 + α

4 )I
2
3 + α

4 I2 +
α
8 (I

2
2 − IIC) + α

4 + α2 ▷ At̃ψ is the isometric lifted content

10: c1 ← 1 + α
4

11: c2 ← α
4

12: c3 ← α
8

13: c4 ← α
4 + α2

14: λtwist1 ← (c2 + 2c3(σ
2
1 + σ2σ3) + c1σ1I3)/ψ − σ1

15: vtwist1 ← vec( 1√
2
U

0 0 0
0 0 1
0 −1 0

V ⊤) ▷ vec(.) flattens a matrix into a vector. See section 3 of [8]

16: λtwist2 ← (c2 + 2c3(σ
2
2 + σ1σ3) + c1σ2I3)/ψ − σ2

17: vtwist2 ← vec( 1√
2
U

 0 0 1
0 0 0
−1 0 0

V ⊤)

18: λtwist3 ← (c2 + 2c3(σ
2
3 + σ1σ2) + c1σ3I3)/ψ − σ3

19: vtwist3 ← vec( 1√
2
U

0 −1 0
1 0 0
0 0 0

V ⊤)

20: λflip1
← (c2 + 2c3(σ

2
1 − σ2σ3)− c1σ1I3)/ψ + σ1

21: vflip1 ← vec( 1√
2
U

0 0 0
0 0 1
0 1 0

V ⊤)

22: λflip2 ← (c2 + 2c3(σ
2
2 − σ1σ3)− c1σ2I3)/ψ + σ2

23: vflip2
← vec( 1√

2
U

0 0 1
0 0 0
1 0 0

V ⊤)

24: λflip3
← (c2 + 2c3(σ

2
3 − σ1σ2)− c1σ3I3)/ψ + σ3

25: vflip3
← vec( 1√

2
U

0 1 0
1 0 0
0 0 0

V ⊤)

26: d1 ← vec(U

1 0 0
0 0 0
0 0 0

V ⊤)

27: d2 ← vec(U

0 0 0
0 1 0
0 0 0

V ⊤)

28: d3 ← vec(U

0 0 0
0 0 0
0 0 1

V ⊤)

29: a11 ← (c4 + 2c3σ
2
2σ

2
3 + c2(σ

2
2 + σ2

3))(c2 + c1σ
2
2σ

2
3 + 2c3(σ

2
2 + σ2

3))/ψ
3

30: a22 ← (c4 + 2c3σ
2
1σ

2
3 + c2(σ

2
1 + σ2

3))(c2 + c1σ
2
1σ

2
3 + 2c3(σ

2
1 + σ2

3))/ψ
3

31: a33 ← (c4 + 2c3σ
2
1σ

2
2 + c2(σ

2
1 + σ2

2))(c2 + c1σ
2
1σ

2
2 + 2c3(σ

2
1 + σ2

2))/ψ
3
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32: a12 ← (c2(c1I3σ3(I2 + σ2
3) + 2c3σ1σ2(I2 − σ2

3)− ψI2σ3) + 4c23σ1σ2(II
∗
C − σ4

3) + 2c3(2c4σ1σ2 − ψII∗Cσ3 +
c1I3(II

∗
C + σ2

1σ
2
2)σ3) + (c1I

2
3 (c1I3 − ψ)− c4(ψ − 2c1I3))σ3 − c22σ2

1σ
2
2)/ψ

3

33: a13 ← (c2(c1I3σ2(I2 + σ2
2) + 2c3σ1σ3(I2 − σ2

2)− ψI2σ2) + 4c23σ1σ3(II
∗
C − σ4

2) + 2c3(2c4σ1σ3 − ψII∗Cσ2 +
c1I3(II

∗
C + σ2

1σ
2
3)σ2) + (c1I

2
3 (c1I3 − ψ)− c4(ψ − 2c1I3))σ2 − c22σ2

1σ
2
3)/ψ

3

34: a23 ← (c2(c1I3σ1(I2 + σ2
1) + 2c3σ2σ3(I2 − σ2

1)− ψI2σ1) + 4c23σ2σ3(II
∗
C − σ4

1) + 2c3(2c4σ2σ3 − ψII∗Cσ1 +
c1I3(II

∗
C + σ2

2σ
2
3)σ1) + (c1I

2
3 (c1I3 − ψ)− c4(ψ − 2c1I3))σ1 − c22σ2

2σ
2
3)/ψ

3

35: if a12 = 0 and a13 = 0 and a23 = 0 then
36: λscale1 ← a11
37: λscale2 ← a22
38: λscale3 ← a33
39: vscale1 ← d1
40: vscale2 ← d2
41: vscale3 ← d3
42: else

43: A←

a11 a12 a13
a12 a22 a23
a13 a23 a33


44: λscale1 , λscale2 , λscale3 ← eigenValues(A)
45: z1, z2, z3 ← eigenVectors(A) ▷ normalized eigen vectors, i.e., ||zi|| = 1
46: D ←

[
d1 d2 d3

]
▷ matrix D with column vectors d1, d2, d3

47: vscale1 ← Dz1
48: vscale2 ← Dz2
49: vscale3 ← Dz3
50: end if
51: HL ←

∑
i∈{twist1,twist2,twist3,flip1,flip2,flip3,scale1,scale2,scale3} max(λi, 0)viv

⊤
i

52: Hxxx ← volume(x̃xx)(∂L∂xxx )
⊤HL

∂L
∂xxx ▷ See Appendix E of [4] for computing ∂L

∂xxx
53: return Hxxx

12



Consider a triangular mesh T in the plane with an oriented boundary ∂T (which may consist of one or
multiple curves). To compute arc-occupancy, we construct, for each edge e ∈ ∂T , a circular arc with center
angle θ and e as its chord. This arc, Γθ(e), has the same orientation as e and lies on the right side of e. We
call Γθ(e) the arc-edge of e, and the curve consisting of all arc-edges the arc-boundary of ∂T , denoted by
Γθ(∂T ). Additionally, we call the area bounded by each edge e and its arc-edge a “flap” (see Figure 5 left
of [2]). The arc-occupancy of ∂T is defined as the occupancy of the arc-boundary minus the sum of all the
flap areas, denoted as Bθ(∂T ):

Oθ(∂T ) = O(Γθ(∂T ))−Bθ(∂T ) (22)

The second term of Equation 22, Bθ(∂T ), has a simple expression:

Bθ(∂T ) =
∑
e∈∂T

∥e∥2(θ − sin θ)

4(1− cos θ)
.

Evaluating the first term of Equation 22, the occupancy of the arc-boundary Γθ(∂T ), amounts to computing
the arrangement of the arc-boundary and the winding number of each region in the arrangement. The
occupancy is the sum of area of all regions with a positive winding number. Please refer to [2] (Section 6)
for details of computing such arrangement, the winding numbers, and the region areas. Finally, since both
terms of Equation 22 can be expressed as functions of the locations of the vertices of ∂T , the gradient of
Oθ(∂T ) can be derived using the chain rule.

6 Additional results

6.1 Benchmark examples

We show more comparisons between our method and competing methods, including TLC [1], SEA [2], and
FFM [3], using examples from the fixed-boundary [1] and free-boundary [2] benchmarks.

Figure 1 shows several 2D examples from the fixed-boundary benchmark. The initial maps in these
examples contain tens to hundreds inverted triangles. While TLC, FFM and our IsoTLC method successfully
recover injectivity in all examples, IsoTLC achieves the lowest isometric distortion among the three methods.

Figure 2 shows several examples from the free-boundary benchmark. Each example contains up to 20
constrained vertices, and the initial map has inverted triangles, overwound vertices, and large areas of overlap
between triangles. While both SEA and our IsoSEA method successfully recover injectivity in all examples,
IsoSEA achieves significantly lower isometric distortions.

6.2 Failure cases of IsoTLC

Even though our IsoTLC method successfully produced injective maps for all examples in the fixed-boundary
benchmark of [1], there is no guarantee that it (or the original TLC method) will always succeed. Here we
investigate several reasons that may cause IsoTLC to fail to produce injective maps.

The first reason is that the mapping problem does not have an injective solution for the given mesh
structure and boundary (and possibly other positional) constraints. Figure 3 shows two such examples taken
from [9], where an injective solution is known to not exist for the respective target boundary (if the mesh
structure is not allowed to change). Our method cannot produce injective maps for either problem, and the
resulting maps still contain flipped triangles.

The second reason is that the energy converges slowly or the solver gets stuck at a non-injective local
minimum. Slow or stalled convergence often arises when the initial map is too far from an injective map.
We show several such failure examples in Figures 4 and 5, both taken from [3] (except for the bottom one
in Figure 4). In Figure 4, the “Lucy” mesh is mapped to the outline of letter “P” but initialized with two
different randomized maps (instead of Tutte embedding as done in our main experiment on the benchmark).
Optimizing TLC (using either QN or PN) fails to produce an injective map within the maximum number of
iterations (10,000) starting from either initial state. Optimizing IsoTLC produces an injective map starting
from one of the initial maps but fails on the other. In Figure 5, we took a tetrahedral mesh sandwiched
between an outer cube and an inner cube and rotated those vertices on the inner cube by various degrees.
Our IsoTLC method produces an injective map for rotations by 45◦, 90◦ and 180◦ but fails for 135◦ (TLC
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Figure 1: Comparing maps computed by TLC [1], FFM [3], and our method (IsoTLC) on several 2D
examples in the fixed-boundary benchmark of [1]. Each example consists of a rest mesh and an initial map
containing inverted triangles (red). Histograms of per-element distortion are shown using the distortion
measure max(σ1, 1/σ2).

succeeds only on 45◦ and 90◦). The FFM method of [3] succeeds in producing injective maps for almost all
examples in these two figures, except for the second random initialization of Figure 4.

6.3 Handling poor triangulations

Finally, we demonstrate our IsoTLC method on meshes containing poorly shaped elements in Figure 6.
These meshes were taken from Thingi10K [10] (id: 662115), and the triangulations are highly anisotropic.
To make sure that the problem is feasible, for each mesh M , we first employed the algorithm of [5] to find
a cut as well as a globally injective map T to the plane. To test IsoTLC, we fixed the boundary ∂T and
created the initial non-injective map by re-embedding M into ∂T using Tutte. We observed that both TLC
and IsoTLC succeeded in producing injective maps for all tested examples, while IsoTLC achieved much
lower distortion.
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Figure 3: Two fixed-boundary mapping examples (top and bottom) taken from [9] where an injective map
does not exist for the given target boundary (without changing the mesh structure). Our IsoTLC method
cannot produce injective maps for such problems.

Figure 4: Two fixed-boundary examples (top and bottom), mapping the “Lucy” mesh to the outline of
letter “P”, initialized with two random maps. The top example is taken from [3]. IsoTLC succeeds in the
top example but fails to produce an injective map within 10000 iterations (using either QN or PN) on the
bottom one. TLC fails on both examples.
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Figure 5: Mapping a tetrahedral mesh bounded by two cubical surfaces after rotating the inner cube by
various degrees (clockwise as viewed from the top). IsoTLC produces injective maps for rotations by 45◦,
90◦ and 180◦ but fails for 135◦. TLC succeeds only on 45◦ and 90◦. We note the number of solver iterations
(and solver type) for each method (iterations for the two phases of optimizing IsoTLC are shown separately).

Figure 6: Fixed-boundary mapping of meshes with poorly shaped triangles from Thingi10K. Both TLC and
IsoTLC succeeded in producing injective maps, while IsoTLC achieved much lower distortion.
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