
Boundary-Sampled Halfspaces: A New Representation for Constructive
Solid Modeling

XINGYI DU,Washington University in St. Louis, USA
QINGNAN ZHOU and NATHAN CARR, Adobe Research, USA
TAO JU,Washington University in St. Louis, USA

We present a novel representation of solid models for shape design. Like

Constructive Solid Geometry (CSG), the solid shape is constructed from a set

of halfspaces without the need for an explicit boundary structure. Instead

of using Boolean expressions as in CSG, the shape is defined by sparsely

placed samples on the boundary of each halfspace. This representation, called

Boundary-Sampled Halfspaces (BSH), affords greater agility and expressive-

ness than CSG while simplifying the reverse engineering process. We discuss

theoretical properties of the representation and present practical algorithms

for boundary extraction and conversion from other representations. Our

algorithms are demonstrated on both 2D and 3D examples.

CCS Concepts: • Computing methodologies → Volumetric models;
Shape analysis.

Additional Key Words and Phrases: CSG, shape design, reverse engineering,

arrangements, graph cut

ACM Reference Format:
Xingyi Du, Qingnan Zhou, Nathan Carr, and Tao Ju. 2021. Boundary-Sampled

Halfspaces: A New Representation for Constructive Solid Modeling. ACM
Trans. Graph. 40, 4, Article 53 (August 2021), 15 pages. https://doi.org/10.
1145/3450626.3459870

1 INTRODUCTION
Solid modeling has wide-ranging applications in design, entertain-

ment, engineering, and manufacturing. Computer representations

of solid shapes have been extensively studied over the past few

decades [Hoffmann 1989]. One of the most successful representa-

tions is Constructive Solid Geometry (CSG) [Requicha and Voelcker

1977]. In CSG, a complex shape is built from a set of simpler shapes

(called halfspaces) using a sequence of Boolean operations on sets,

including union (∪), intersection (∩), and difference (\). A key ben-

efit of CSG, compared to other representations such as boundary

representations (B-reps), is that it guarantees the solidity (i.e., water-

tightness) of the shape without maintaining an explicit boundary

structure. This makes CSG particularly simple to use and one of the

essential tools for shape design.

However, CSG has several limitations that are rooted in Boolean

operations. First, composing a shape made up of multiple halfspaces

often requires a complex Boolean expression (often known as the

CSG tree). Maintaining and updating this expression, in addition

Authors’ addresses: Xingyi Du, Washington University in St. Louis, USA, du.xingyi@

wustl.edu; Qingnan Zhou; Nathan Carr, Adobe Research, USA; Tao Ju, Washington

University in St. Louis, USA.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

0730-0301/2021/8-ART53

https://doi.org/10.1145/3450626.3459870

(a) (b) (c)

Fig. 1. A segmented shape (a) is converted into our representation (b), which
consists of halfspaces associated with sparse samples (colored spheres). Each
halfspace is either a simple primitive (e.g., plane, sphere, etc.) or a free-form
implicit surface (one is shown in transparency). The representation can be
easily edited by modifying the halfspaces and/or their samples (c).

to the halfspaces, may add extra burden to the user during shape

editing. Second, it is well-known that Boolean expressions cannot

describe all possible shapes bounded by a set of halfspaces, and

additional separating halfspaces might be needed even though they

do not contribute to the shape’s geometry [Shapiro and Vossler

1991]. For example, given the two oval-shaped halfspaces in Figure

2 (a), Boolean operations can only create the first four shapes in

(b), whereas the last two shapes in (b) each requires an extra linear

halfspace (green) to be describable by CSG. The need for these

“hidden” halfspaces not only makes both shape design and reverse

engineering more challenging, but also limits CSG to mostly simple

primitives (e.g., planes, spheres, cylinders, etc.) where the separating

halfspaces are relatively simple to construct. Third, given a shape

and a set of halfspaces, there may exist a large number of different

Boolean expressions that can express the same shape. Finding a

Boolean expression that is intuitive for downstream editing remains

a major challenge in reverse engineering CSG shapes from other

representations [Buchele and Crawford 2003; Du et al. 2018; Fayolle

and Pasko 2016; Fayolle et al. 2008; Hamza and Saitou 2004; Silva

et al. 2005; Wu et al. 2018].

In this paper, we propose a new halfspace-based representation

of solid shapes that does not rely on Boolean operations. The com-

position of the halfspaces is expressed by sparse samples on the

parts of the halfspace boundaries that bound the shape. Given the

halfspaces and samples, the shape boundary is defined as the subset

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459870
https://doi.org/10.1145/3450626.3459870
https://doi.org/10.1145/3450626.3459870

53:2 • Du, X. et al

A

B

(a) Halfspaces

C C
(b
) C

SG
(c
) B

SH

Fig. 2. Comparing CSG (b) and BSH (c) in representing six different shapes that are bounded by two halfspaces𝐴, 𝐵 (a). To represent the last two shapes, CSG
requires an additional separating halfspace 𝐶 (halfplane on the left of the green dashed line), whereas BSH does not. The line segment at each sample point in
BSH indicates the outward orientation of the respective halfspace.

of the union of halfspace boundaries that contains the most samples,

has the minimal area, and satisfies certain constraints. These con-

straints enforce the solidity of the shape, preserve the orientation

of the halfspaces, and avoid artifacts caused by area minimization

(e.g., short-cutting). We call our representation Boundary-Sampled
Halfspaces (or BSH). As examples, Figure 2 (c) shows the BSH repre-

sentations of the CSG shapes in (b).

Replacing Boolean expressions by boundary samples allows BSH

to overcome the limitations of CSG mentioned earlier. Since the

samples lie on the shape boundary, they can be conveniently visu-

alized and manipulated. With enough samples, BSH can express

all possible shapes bounded by a given set of halfspaces without

needing additional “hidden” halfspaces as in CSG. In practice, we

observe that only a small number of samples is sufficient (e.g., Figure

2 (c)). Lastly, without the need for recovering a Boolean expression,

reverse engineering BSH is much more straight-forward than CSG.

Both the halfspaces and samples can be readily obtained from a

segmented shape. With these properties, BSH is well-suited to rep-

resent piecewise smooth shapes, such as the one shown in Figure 1,

in an easily editable form.

We make several technical contributions in this paper:

• We propose the BSH presentation (Section 3). The representa-

tion is inspired by previous work on piecewise planar shape

reconstruction [Bauchet and Lafarge 2020; Boulch et al. 2014;

Chauve et al. 2010; Oesau et al. 2014; Verdie et al. 2015], and

we introduce a novel constraint to avoid artifacts caused by

area minimization when the samples are sparse.

• Wedemonstrate several theoretical properties of BSH (Section

4). Most notably, we show that BSH can describe any solid

shape using only the halfspaces bounding the shape and a

bounded number of samples (Proposition 4.1).

• We present a theoretically complete algorithm, and a prac-

tically efficient variant, for extracting the shape boundary

defined by BSH (Section 5). These algorithms combine state-

space search with graph-cuts over the arrangement of the

halfspaces.

• For reverse-engineering, we present a simple but effective

heuristic algorithm for generating a minimal set of samples

that reproduces a target shape (Section 6).

Our algorithms are demonstrated on both 2D and 3D examples

in Section 7. A key limitation of our algorithms is their scalability,

because boundary extraction requires the computation of the 3D ar-

rangement of all halfspaces. We discuss ideas to improve scalability

and other future directions in Section 8.

2 RELATED WORK

2.1 Representations of solid models
Various researchers have studied the classifications of solid model

representations [Requicha 1980; Rossignac and Requicha 1999; Shapiro

2002]. For example, Rossignac and Requicha [1999] grouped repre-

sentations into three categories. Boundary representations (B-reps)

represents the shape’s boundary as a set of non-overlapping para-

metric or trimmed patches that form a closed manifold. Constructive

representations, which include CSG but also others like twisting,

bending, and Minkowski sums, capture the process in which a shape

is constructed by a sequence of operations. Finally, spatial decom-

position schemes, such as voxel grids, octrees, and binary spatial

partitioning (BSP), represent the solid interior as the union of spa-

tial cells. We refer readers to textbooks such as [Hoffmann 1989]

for a thorough discussion on these representations and associated

techniques.

BSH draws elements from all three categories in Rossignac’s

classification. Like CSG, BSH composes a complex shape from a

set of simpler shapes (halfspaces). Like B-reps, BSH defines a solid

by its boundary, which is selected from the union of all halfspace

boundaries. Computationally, BSH is represented as a union of

spatial cells in the arrangement of the halfspaces.

2.2 CSG
Pioneered by Requicha and Voelcker in the 70’s [1977] and defined

by regularized Boolean set operations on halfspaces, CSG has be-

come one of the most popular approaches for solid modeling, due to

its guarantee of solidity and the ease of control. The most commonly

used halfspaces are parameterized primitives, such as boxes, spheres,

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

Boundary-Sampled Halfspaces: A New Representation for Constructive Solid Modeling • 53:3

cones, cylinders, and tori, but other forms of halfspaces have been

extensively studied in the research community, such as implicit func-

tions [Nielson 2004; Pasko et al. 1995], parametric surfaces [Casale

and Bobrow 1989; Keyser et al. 2004], and meshes [Bernstein and

Fussell 2009; Douze et al. 2017; Feito et al. 2013; Pavić et al. 2010;

Smith and Dodgson 2007; Wang 2010; Xu and Keyser 2013]. CSG

has been extended to support other types of constructive modeling

operations such as blending [Rossignac and Requicha 1984], offset-

ing [Rossignac and Requicha 1986], and warping [Wyvill et al. 1999].

Variants of CSG, such as the union of convex shapes [Chen et al.

2020], have also been proposed for shape representation.

Shapiro and Vossler [1991] were the first to study the expres-

siveness of CSG. Their describability theorem states that a shape

can be represented by a given set of halfspaces using Boolean op-

erations if and only if all connected components in each canonical
intersection term of the halfspaces have the same inside/outside clas-

sification with respect to the shape. However, even simple shapes

may fail the describability criteria (e.g., last two shapes in Figure 2

(b)), and additional separating halfspaces are needed for such shapes

to be describable by CSG. Shapiro and Vossler [1993] showed that

linear separating halfspaces are sufficient for shapes bounded by

piecewise quadrics (such as the primitives mentioned above, except

tori). Several heuristics, such as plane enumeration [Du et al. 2018]

and oriented bounding planes [Fayolle and Pasko 2016; Wu et al.

2018], have been proposed for constructing linear separating half-

spaces. However, shapes bounded by higher-order surfaces (e.g.,

the Vase in Figure 1) would require separating halfspaces of higher

order [Shapiro and Vossler 1993], and their construction remains

an untreated problem.

A key challenge in reverse engineering CSG shapes is to recover

a simple and intuitive Boolean expression for downstream editing.

Even when the set of halfspaces is fixed, the same shape can be

defined using different Boolean expressionswith drastically different

complexity. The problem of simplifying a given Boolean expression

of halfspaces (e.g., to minimize the number of literals) is known to

be NP-hard [Shapiro and Vossler 1991]. This problem is still under

active research, and example strategies include greedy heuristics

[Buchele and Crawford 2003], genetic algorithms [Fayolle and Pasko

2016; Fayolle et al. 2008; Hamza and Saitou 2004; Silva et al. 2005],

binary optimization [Wu et al. 2018] and program synthesis [Du et al.

2018]. As we show in Section 7, even the state-of-the-art methods

may produce complex Boolean expressions that are difficult for

humans to understand or manipulate.

2.3 Piecewise planar reconstruction
Ourwork is inspired bymethods for reconstructing piecewise planar

shapes, such as indoor environments [Boulch et al. 2014; Oesau

et al. 2014], architectural structures [Chauve et al. 2010; Verdie et al.

2015], and general man-made shapes [Bauchet and Lafarge 2020].

A common theme in these works is formulating reconstruction as

a labelling problem on the arrangement of planar proxies detected

from the input scan. The labelling energy typically consists of a

data term that leverages the availability of a dense set of input

points and scanner information (e.g., lines of sight), and a simple

regularization term that minimizes the total surface area. As we

will show in Section 3, when the data points are sparse, minimizing

the area alone leads to undesirable “short-cutting” artifacts. Boulch

and coworkers [Boulch et al. 2014; Langlois et al. 2019] introduced

additional regularization terms that minimize the length of edges

and number of corners on the reconstructed surface. While these

terms reduce short-cuts, they cannot eliminate them (see Figure 5).

Furthermore, these terms introduce additional parameters to the

labeling energy that need to be tuned. Our BSH formulation adopts

a novel connectivity constraint that eliminates short-cutting while

keeping the formulation parameter-free.

2.4 Arrangements
To extract the boundary of a BSH shape, our algorithm first needs

to compute the arrangement of the halfspaces. While algorithms for

computing the arrangement of lines and planes are well-established

[Agarwal and Sharir 2000], computing geometrically and topolog-

ically accurate arrangements of curved (parametric or algebraic)

geometry is significantly more challenging, and exact algorithms

are only known for 2D curves [Alberti et al. 2008; Berberich et al.

2012; Lien et al. 2014] and 3D quadrics [Dupont et al. 2007; Mourrain

et al. 2005; Schömer and Wolpert 2006]. Since we are computing a

polygonal approximation of the shape’s boundary, exact arrange-

ments are not necessary, and we instead compute the arrangement

after first polygonizing the boundary surface of each halfspace. This

allows us to leverage recent development of robust and efficient

algorithms for computing arrangements of closed meshes [Cherchi

et al. 2020; Zhou et al. 2016].

3 SHAPE REPRESENTATION
The input to our representation is set of halfspaces, whose bound-
aries are denoted as {𝑏1, . . . , 𝑏𝑛}, and a set of samples 𝑠𝑖 located
on each boundary 𝑏𝑖 . A halfspace defines a solid region, or more

precisely, a regular semi-analytic subset of the space R𝑑 [Shapiro

and Vossler 1991]. A halfspace can assume any representation, such

as an implicit function, a B-rep, a CSG, or a BSH as defined here. We

assume that each boundary 𝑏𝑖 is a (𝑑 − 1)-dimensional manifold,

and the intersections between boundaries are generic and have a

finite combinatorial structure. We also assume that most (if not all)

of the samples also lie on the shape boundary.

The shape is defined as another halfspace whose boundary, de-

noted as 𝑏, is taken as a subset of the union of all input boundaries

∪𝑖𝑏𝑖 . Intuitively, the shape is composed of some part from each input

shape. However, merely bounding a halfspace and being a subset of

the input boundaries is far from sufficient to define the shape. Our

definition of the shape boundary 𝑏 is based on several additional

criteria, which we discuss next. While similar criteria have been

considered in context of shape reconstruction [Bauchet and Lafarge

2020; Boulch et al. 2014; Chauve et al. 2010; Oesau et al. 2014; Verdie

et al. 2015], we make some new observations and propose a novel

criteria (sample-connectedness) to better handle sparse samples that

are desirable for shape design.

3.1 Shape criteria

Sample coverage As the samples are expected to lie on the shape,

we ask the shape boundary 𝑏 to contain as many samples as possible.

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

53:4 • Du, X. et al

Note that we do not require 𝑏 to contain all samples. This allows

our representation to be more tolerant to inaccuracy in the input,

for example when the samples are provided by casual interactions

or read in from a noisy point cloud.

Orientation preservation It is natural to ask that each input bound-

ary 𝑏𝑖 to preserve its inside/outside orientation on 𝑏. More precisely,

let Ω𝑏𝑖 be the interior of the halfspace bounded by 𝑏𝑖 , and 𝑁 (𝑥) the
local neighborhood of a point 𝑥 , we define:

Definition 3.1. A halfspace boundary 𝑏 ⊆ ∪𝑖𝑏𝑖 is orientation-
preserving if for any 𝑖 = 1, . . . , 𝑛 and any point 𝑥 ∈ 𝑏 ∩ 𝑏𝑖 such that

𝑥 ∉ 𝑏 𝑗 for all 𝑗 ≠ 𝑖 (that is, 𝑏𝑖 is the only boundary that contains 𝑥),

then 𝑁 (𝑥) ∩ Ω𝑏𝑖 = 𝑁 (𝑥) ∩ Ω𝑏 (that is, both 𝑏𝑖 and 𝑏 give the same

inside/outside classification to the local neighborhood of 𝑥).

Although this criterion has been previously considered [Chauve

et al. 2010], wemake a new observation that any orientation-preserving
and halfspace-bounding subset 𝑏 ⊆ ∪𝑖𝑏𝑖 is a (𝑑 − 1)-manifold. For
example, all shapes in Figure 3 are orientation-preserving except

for the non-manifold shape in (a). We give an argument for the

manifoldness in 𝑑 = 2, 3 dimensions. Suppose otherwise that 𝑏 is

non-manifold at some point 𝑥 . Since each 𝑏𝑖 is a manifold, 𝑥 must lie

on the intersection between multiple 𝑏𝑖 . Since 𝑏 is non-manifold at

𝑥 , the local neighborhood of 𝑥 interior to 𝑏, 𝑁 (𝑥) ∩Ω𝑏, has multiple

connected components. Consider any two of these components,

noted by 𝑐1, 𝑐2 (see insert for an illustra-

tion in 2 dimensions). Due to generic in-

tersections of input boundaries, it can

be verified by case enumeration in 2 and

3 dimensions that there exists some 𝑏𝑖
containing 𝑥 (e.g., 𝑏1 in the insert) such

that it bounds both 𝑐1 and 𝑐2 but from op-

posite sides (e.g., 𝑐1 is inside 𝑏𝑖 but 𝑐2 is

outside), which violates the orientation

preservation criterion.

Compactness Preserving boundary orientations and maximally

covering samples are still not sufficient to define the shape. For

example, all four shapes in Figure 3 (b-e) meet these two criteria. A

regularization term commonly considered in surface reconstruction

is to ask the boundary to have a minimal measure (e.g., curve length,

surface area, etc.). This criterion encourages compact shapes (e.g.,

Figure 3 (e)), which often better capture design intentions.

(a) (b) (c) (d) (e)

Fig. 3. Possible shapes defined by the same halfspaces and samples: (a) not
orientation-preserving; (b,c,d) orientation-preserving but not compact; (e)
both orientation-preserving and compact.

Sample-connectedness The side effect of encouraging compact-

ness, particularly when there are only few samples, is that parts of

the shape can be “short-cut” to reduce the boundary size. This is il-

lustrated by the example in Figure 4. The three halfspaces and three

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Starting from an initial triangle (a), adding a semi-circle on the
top (b) results in short-cutting of the triangle if only boundary length is
minimized. Moving a sample recovers the missing portion of the triangle (c),
but more short-cutting appears after adding another semi-circle on the top
(d). Enforcing sample-connectedness avoids short-cutting without moving
the samples (e,f). Arrows indicate short-cutting pieces.

samples in (a) define a triangular shape. After adding a new compo-

nent at the top in (b), however, minimizing boundary length results

in the triangular shape being truncated by one of the halfspaces

that define the top component (indicated by the arrow).

One approach to avoid short-cuts is moving or adding new sam-

ples. For example, the missing part of the triangle in Figure 4 (b)

can be recovered by relocating one of the samples (red), as shown

in (c). However, new short-cuts may appear after more edits to the

shape, as shown in (d), where the middle section of the triangle is

now truncated by two short-cutting pieces (marked by arrows). The

short-cutting can be fixed again by relocating existing samples or

adding new samples. This approach, however, leads to increased

burden on the modeler and possibly a large number of samples.

Short-cutting is not a major problem for shape reconstruction

from scanned inputs, where there are usually sufficient number of

input points that cover the shape. Aiming at a slightly different

goal, Boulch and coworkers [Boulch et al. 2014; Langlois et al. 2019]

proposed to additionally minimize the combinatorial complexity of

the boundary surface, measured in terms of the number of “corners”

(where three or more halfspaces meet) and length of “edges” (where

two halfspaces meet). Although short-cuts often increase the com-

binatorial complexity (e.g., compare Figure 4 (b) and (c)), this is not

always the case. For example, the shape in Figure 5 (a) is defined by

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

Boundary-Sampled Halfspaces: A New Representation for Constructive Solid Modeling • 53:5

(a) (b)

Fig. 5. The boundary definedwithout (a) andwith (b) sample-connectedness.
Short-cutting occurs on the first shape (see arrow) but not on the second
shape. Note that both shapes have the same number of corners (where two
halfspaces meet) on their boundary.

an input similar to Figure 4 (b) with the addition of a circle, and a

similar short-cut takes place (indicated by the arrow) that stops the

bottom triangle from meeting the circle. Note that this boundary

has the same number of corners (6) as the one in Figure 5 (b), where

there is no short-cutting.

To eliminate short-cuts, our key observation is that a short-cutting

piece that belongs to some input boundary 𝑏𝑖 is always disconnected
from those parts of 𝑏𝑖 that are meant to be on the shape boundary 𝑏.

For example, the short-cutting piece in Figure 4 (b), which belongs

to the cyan halfspace, is disconnected from the cyan segment that

bounds the semi-circle at the top of the shape. A simple criteria to

prevent short-cutting is to ask 𝑏 to be sample-connected as defined

below:

Definition 3.2. A set of patches 𝑏 is called sample-connected if for

any input boundary 𝑏𝑖 , each connected component of 𝑏𝑖 ∩𝑏 contains
at least one sample of 𝑠𝑖 .

For example, imposing sample-connectedness would lead to short-

cut-free shapes in Figure 4 (d,e) and Figure 5 (b), without the need to

relocate or add samples. Note that applying this criteria requires the

input to contain at least one sample for each connected component

of patches on the shape that belong to the same halfspace. In our

experiments, we find this to be a reasonable requirement for a large

class of shapes.

3.2 Shape definition
Considering the criteria above, we define the BSH shape as follows:

Definition 3.3 (Boundary-Sampled Halfspaces). Given halfspace

boundaries 𝑏𝑖 and their samples 𝑠𝑖 , the BSH shape is a halfspace

bounded by some 𝑏 ⊆ ∪𝑖𝑏𝑖 that is orientation-preserving (Defini-

tion 3.1), sample-connected (Definition 3.2), and minimizing the

following energy:

𝐸 (𝑏) = 𝜆 |𝑆 \ 𝑏 | + |𝑏 | (1)

where | · | gives the cardinality of a finite set or geometric measure

of a continuous set, 𝑆 = ∪𝑖𝑠𝑖 , and 𝜆 is any constant that is greater

than | ∪𝑖 𝑏𝑖 |.

The two terms of 𝐸 (𝑏) measure the number of missing samples

on 𝑏 and the size of 𝑏, respectively. The constant 𝜆 plays the role

of prioritizing sample coverage over compactness, and its lower-

bound is set such that minimizing 𝐸 (𝑏) is equivalent to minimizing

the tuple {|𝑆 \ 𝑏 |, |𝑏 |} in lexicographical ordering. As a result, the

actual value of 𝜆 has no impact on the optimal boundary 𝑏, and the

definition is parameter-free.

4 PROPERTIES
We will show that the shape definition given above enjoys several

desirable properties. First, the shape as defined always exists and

is unique (assuming geometric genericity). More importantly, any

solid shape can be defined as BSH using a set of halfspaces bounding

the solid and a sufficient number of samples.

4.1 Existence
We can show that a boundary𝑏 meeting the constraints in Definition

3.3 always exists. Consider the set 𝐻 of all halfspace boundaries

𝑏 ⊆ ∪𝑖𝑏𝑖 that are orientation-preserving and sample-connected. It

suffices to show that 𝐻 is finite and non-empty, which would imply

that a member 𝑏 ∈ 𝐻 minimizing the energy 𝐸 (𝑏) would always

exist. 𝐻 is a non-empty set, because it has at least one member,

the empty boundary 𝑏 = ∅. To see that 𝐻 is a finite set, consider

the partitioning of each input boundary 𝑏𝑖 by the remaining input

boundaries, and we call a region of 𝑏𝑖 in this partitioning a patch.
Since each member 𝑏 ∈ 𝐻 bounds a halfspace, and 𝑏 is subset of

∪𝑖𝑏𝑖 , it follows that 𝑏 must consist of a collection of patches. On the

other hand, since we assume that the intersections of boundaries

have a finite structure, there are only finite number of patches on

all 𝑏𝑖 . Therefore 𝐻 , whose elements are subsets of a finite number

of patches, must be finite.

4.2 Uniqueness
Using the argument above, the boundary 𝑏 defined in Definition

3.3 is the member of a finite set 𝐻 that has the least energy 𝐸 (𝑏).
Since 𝐸 (𝑏) considers the geometric measure of 𝑏, any tie between

multiple (but finite) members of 𝐵 with the same minimal energy

can be broken by an infinitesimal perturbation of the geometry of

the input boundaries. Hence, generically speaking, the BSH shape

is unique.

We give a non-generic example in Figure 6. In this case, the shaded

region is a perfect square, which results in two valid BSH shapes

(one with two separate components and the other with a single

component) with equal boundary length. The tie would be broken

as soon as one of the halfspaces that bound the square region is

perturbed.

4.3 Describability
Unlike CSG, BSH can fully describe any solid shape bounded by the

given halfspaces, if sufficient and well-chosen samples are given:

Proposition 4.1 (Describability). Consider any halfspace bound-
ary 𝑏 ⊆ ∪𝑖𝑏𝑖 that is orientation-preserving. Then there exists a (possi-
bly empty) sample set 𝑆 such that 𝑏 is the unique boundary defined
by Definition 3.3.

Proof. Following the earlier arguments on existence, 𝑏 is made

up of a subset of patches on the input boundaries. Consider the

set 𝑆 = {𝑠1, . . . , 𝑠𝑛} such that 𝑠𝑖 consists of one sample for each

patch of 𝑏𝑖 that lies on 𝑏 (the geometric location of the sample

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

53:6 • Du, X. et al

Fig. 6. A non-generic input (the shaded region being a perfect square) that
results in two valid BSH shapes.

on the patch does not matter), as illustrated in Figure 7 (a). We

will show that the boundaries {𝑏1, . . . , 𝑏𝑛} and samples 𝑆 uniquely

define 𝑏 via Definition 3.3. First, 𝑏 is sample-connected, since each

connected component of 𝑏𝑖 ∩𝑏 contains at least one patch, and each
such patch includes a sample in 𝑠𝑖 . Next, we show that there exists

no other boundary 𝑏 ′ ⊆ ∪𝑖𝑏𝑖 , which is also halfspace-bounding,

orientation-preserving, and sample-connected, such that 𝐸 (𝑏 ′) ≤
𝐸 (𝑏). Assuming otherwise, then by the formulation of 𝐸 we know

that |𝑆 \ 𝑏 ′ | ≤ |𝑆 \ 𝑏 | and |𝑏 ′ | ≤ |𝑏 |. Since 𝑏 contains all samples 𝑆 ,

|𝑆 \ 𝑏 ′ | = |𝑆 \ 𝑏 | = 0, and hence 𝑏 ′ must contain all samples as well.

Since each patch of 𝑏 contains a sample, 𝑏 ⊆ 𝑏 ′. On the other hand,

since |𝑏 ′ | ≤ |𝑏 |, we conclude that 𝑏 = 𝑏 ′. □

The proof also shows that the maximum number of samples

needed to describe the shape is upper-bounded by the total number

of patches on the given boundaries. This bound is always finite, but

it can be quite large. Even in the case that all 𝑏𝑖 are planar, there

are as many as 𝑂 (𝑛𝑑) patches in R𝑑 . In practice, however, much

fewer samples are needed to represent the shape, thanks to the

compactness and sample-connectedness criteria. Figure 7 (a,b) show

the same boundary defined by two sets of samples, a larger set (a)

constructed as in the proof above, where there is one sample on

each patch of the shape boundary, and a smaller (and minimal) set

(b), where there is one sample for each connected component of

patches of the same halfspace. However, for shapes like that shown

in Figure 7 (c) (a set of disjoint squares on a 2D lattice), the number

of connected components of patches of the same halfspace that

cover the shape is proportional to the total number of patches on

all halfspace boundaries. Hence as many as 𝑂 (𝑛𝑑) samples would

be needed to define such a shape.

5 BOUNDARY EXTRACTION
To extract the boundary defined by BSH, we formulate it as an in-

side/outside labelling problem over the solid cells of the arrangement
of the input boundaries𝑏𝑖 . The shape boundary𝑏 is then constructed

as the interface between cells of different labels. The advantage of

this dual formulation is that, by construction, the output is a subset

of the input boundaries and always bounds a halfspace.

If the sample-connectedness constraint is ignored, the remaining

constraint (orientation-preservation) and the energy 𝐸 (Equation 1)

can be formulated as localized labelling energy involving a single

(a) (b) (c)

Fig. 7. (a,b): The same boundary can be defined with different sets of sam-
ples. (c): An example of a shape where the number of samples needed is
quadratic to the number of halfspaces.

cell or two adjacent cells. Such energy can be optimally and effi-

ciently solved using graph-cuts, as similarly done for reconstructing

piecewise planar shapes [Bauchet and Lafarge 2020; Boulch et al.

2014; Chauve et al. 2010; Oesau et al. 2014; Verdie et al. 2015]. How-

ever, enforcing sample-connectedness makes the labelling problem

much more challenging, as the connectivity of boundary compo-

nents cannot be measured locally.

In the following, we first describe the labelling formulation and

graph-cut algorithm for extracting the shape boundary without the

sample-connectedness constraint. We will then present a heuristic

search algorithm for solving the sample-connected labelling problem

that uses the graph-cut algorithm as a building block.

5.1 Without sample-connectedness
Consider the 𝑑-dimensional cells𝐶 in the arrangement of the bound-

aries {𝑏1, . . . , 𝑏𝑛}. We say two cells are adjacent if they share a com-

mon patch (recall that a patch is a (𝑑 − 2)-dimensional region in the

partitioning of one input boundary by the remaining boundaries).

We seek a binary labelling function 𝐿 : 𝐶 → {1, 0} (1 meaning inside

and 0 meaning outside) over the arrangement cells that minimize

the following energy:

ℎ(𝐿) =
∑︁
𝑐∈𝐶

ℎ𝑐 (𝐿(𝑐)) +
∑︁

adjacent {𝑐1,𝑐2 }⊆𝐶
ℎ𝑐1,𝑐2 (𝐿(𝑐1), 𝐿(𝑐2)) (2)

where ℎ𝑐 , ℎ𝑐1,𝑐2 are unary and binary terms to be explained below.

These terms are defined such that, given an energy-minimizing la-

belling 𝐿, the union 𝑏 of all patches shared by cells with different la-

bels is the BSH shape without the sample-connectedness constraint

(i.e., 𝑏 is orientation-preserving and minimizes 𝐸 (𝑏) in Equation 1).

The unary term captures the first term of the energy 𝐸 (number of

missing samples). To motivate our definition, let us first consider a

patch 𝑝 shared by two cells 𝑐1, 𝑐2, and let 𝑖𝑝 be the index of the input

boundary that contains 𝑝 . Note that 𝑐1, 𝑐2 are on different sides of

the boundary 𝑏𝑖𝑝 . The shape boundary 𝑏 will not contain 𝑝 if both

cells 𝑐1 and 𝑐2 have the same label, which means that exactly one

of them has a label that differs from its inside/outside classification

by 𝑏𝑖𝑝 . We therefore “charge” the cost of the missing samples on 𝑝

to that cell. The unary term for a cell 𝑐 and a given label 𝑙 , ℎ𝑐 (𝑙), is
therefore defined as the total number of samples on those patches

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

Boundary-Sampled Halfspaces: A New Representation for Constructive Solid Modeling • 53:7

bounding 𝑐 that classify 𝑐 differently from 𝑙 ,

ℎ𝑐 (𝑙) = 𝜆 ∗
∑︁

𝑝∈𝜕𝑐,𝑏𝑖𝑝 (𝑐)≠𝑙
|𝑠𝑝 |. (3)

Here, 𝜕𝑐 is the set of patches bounding 𝑐 , 𝑠𝑝 is the set of samples

on 𝑝 , and 𝑏𝑖 (𝑐) indicates the classification of 𝑐 by boundary 𝑏𝑖 such

that 𝑏𝑖 (𝑐) = 1 or 0 if 𝑐 is inside or outside 𝑏𝑖 .

The binary term captures both the orientation-preservation con-

straint and the second term of 𝐸 (boundary size). Consider two

adjacent cells 𝑐1, 𝑐2, and let 𝑖𝑐1,𝑐2 be the index of the input boundary

that separates them. The binary term is non-zero if the two cells

have different labels. Specifically, if their labels agree with their

classification by the input boundary 𝑏𝑖𝑐
1
,𝑐
2

, then the cost is the geo-

metric size of the common patches that they share. Otherwise, to

enforce orientation-preservation, the cost is set to infinity. More

precisely,

ℎ𝑐1,𝑐2 (𝑙1, 𝑙2) =

∑
𝑝∈𝜕𝑐1∩𝜕𝑐2 |𝑝 |, if 𝑙1 ≠ 𝑙2 and 𝑙1 = 𝑏𝑖𝑐

1
,𝑐
2

(𝑐1)
∞, if 𝑙1 ≠ 𝑙2 and 𝑙1 ≠ 𝑏𝑖𝑐

1
,𝑐
2

(𝑐1)
0, if 𝑙1 = 𝑙2

(4)

The labelling energy in Equation 2, in turn, can be formulated as

the cost of an 𝑠 − 𝑡 cut on a directed graph 𝐺 = {𝑉 , 𝐸}. Note that a
directed graph is necessary because the binary term (Equation 4) is

asymmetric (i.e., ℎ𝑐1,𝑐2 (1, 0) ≠ ℎ𝑐1,𝑐2 (0, 1)). The vertices 𝑉 represent

the cells of 𝐶 with two additional terminal vertices, 𝑠 and 𝑡 . The
edges 𝐸 and their weights are defined as follows (see illustration in

Figure 8):

• There is an edge 𝑣1 → 𝑣2 for every (ordered) pair of non-

terminal vertices {𝑣1, 𝑣2}, whose weight is ℎ𝑐1,𝑐2 (1, 0) where
𝑐1, 𝑐2 are the cells represented by 𝑣1, 𝑣2.

• There is an edge 𝑠 → 𝑣 and an edge 𝑣 → 𝑡 for every non-

terminal vertex 𝑣 , whose weights are respectively ℎ𝑐 (0) and
ℎ𝑐 (1) where 𝑐 is the cell represented by 𝑣 .

An 𝑠 − 𝑡 cut on 𝐺 divides the vertices 𝑉 into two subsets 𝑆,𝑇

such that 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . The cost of the cut is the sum of weights

associated with the cut set, which are edges connecting from a node

in 𝑆 to a node in 𝑇 . A labelling on the arrangement cells 𝐶 can be

obtained from an 𝑠 − 𝑡 cut on 𝐺 by labelling each cell as 1 (resp. 0)

if the corresponding vertex in 𝐺 lies in subset 𝑆 (resp. 𝑇). Similarly,

an 𝑠 − 𝑡 cut on 𝐺 can be obtained from any labelling of 𝐶 . It can be

verified that, using the edge weights defined above, the cost of an

𝑠 − 𝑡 cut on 𝐺 is the same as the energy ℎ(𝐿) of its corresponding
labelling 𝐿 on𝐶 . As a result, the energy-minimizing labelling can be

obtained by computing the minimal-cost 𝑠 − 𝑡 cut on 𝐺 , which can

be done efficiently using the Edmonds-Karp algorithm [Edmonds

and Karp 1972]. As an example, the 𝑠 − 𝑡 cut of the graph in Figure

8 (b) corresponds to the labelling in the arrangement in (a).

5.2 With sample-connectedness
Recall that the sample-connectedness constraint asks that, for any

input boundary𝑏𝑖 , each connected component of𝑏∩𝑏𝑖 must contain

a sample. Checking for this constraint requires computing the con-

nected components on the shape boundary 𝑏, which is not a local

operation and hence cannot be formulated as a local energy like

ℎ in Equation 2. To enforce the constraint, we propose a best-first

Fig. 8. (a): An arrangement of input boundaries with 4 cells (𝑐1, 𝑐2, 𝑐3, 𝑐4)
and 4 patches (each having a length of 1 or 2), and the energy-minimizing
labelling (only 𝑐2 is inside). (b): The corresponding directed graph with edge
weights and the min 𝑠 − 𝑡 cut (𝑆 vertices are black,𝑇 vertices are white, and
cut set edges are dashed). Zero-weighted edges are not shown.

search algorithm that starts from a non-sample-connected solution

(e.g., result of graph-cut) and iteratively explores solutions that get

closer to being sample-connected. We will show that the search

is complete, in the sense that it always returns the BSH shape in

finite iterations. Although the computational complexity can be

prohibitive, we found that a simple modification of the search leads

to an approximate algorithm that is both efficient and effective in

practice.

The basic idea of our search is iteratively running the graph-cut

algorithm with more constraints of what patches can (or cannot) be

used. The algorithm maintains a collection of states {𝑟, 𝑏}, where
𝑟 ⊆ ∪𝑖𝑏𝑖 is a set of patches marked as “removed” and 𝑏 is the

minimal-energy boundary using the unmarked patches. The latter

is computed by the graph-cut algorithm described above after setting

|𝑝 | = ∞ in the binary term (Equation 4) for all marked patches 𝑝 ∈ 𝑟 .
The search starts with a single state with no patches marked for

removal. At each iteration, the state {𝑟, 𝑏} with the least energy 𝐸 (𝑏)
is deleted from the queue. If boundary 𝑏 is not sample-connected,

we identify a collection of patch sets on 𝑏, called removable sets,
which are likely to not belong to the desired BSH boundary. For

each removable set, a new state is created with patches 𝑟 ∪𝑠 marked

for removal and a new boundary is computed by graph-cut. The

algorithm terminates when the boundary 𝑏 is sample-connected.

The pseudo-code of the algorithm is provided in Figure 9.

A key piece of the algorithm is identifying the removable sets for

a given boundary𝑏. For the search to succeed, at least one removable

set should not appear on the desired boundary. Since our goal is to

achieve sample-connectedness, a natural candidate of a removable

set is a sample-free connected component of 𝑏 ∩𝑏𝑖 , for some 𝑏𝑖 . We

call such component an island. However, while some islands are

short-cutting pieces that indeed do not lie on the intended shape

(e.g., those marked by arrows in Figure 4 and 5), an island can also be

part of the intended shape but separated from other components by

short-cuts (e.g., 𝑝1, 𝑝2 in Figure 4 (d)). Nevertheless, we observe that,

for any given sample-connected boundary 𝑏 ′ (such as the desired

BSH boundary), either an island of 𝑏 or one of its adjacent patches

on 𝑏 do not appear on 𝑏 ′:

Proposition 5.1. Let 𝑏,𝑏 ′ ⊆ ∪𝑖𝑏𝑖 be two halfspace bounding,
orientation-preserving boundaries such that 𝑏 is not sample-connected
but 𝑏 ′ is. For any island 𝐼 ⊆ 𝑏, defined as a connected component of

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

53:8 • Du, X. et al

EXTRACT-BOUNDARY (𝐵,𝑆)

𝑏← graph-cut(𝐵,𝑆 ,∅)
𝑄← ∅
𝑄 .push({∅, 𝑏})
Repeat:

{𝑟, 𝑏}← 𝑄 .pop()

If 𝑏 is sample-connected:

Return 𝑏

Repeat for each removable set 𝑠 of 𝑏:

𝑟 ′← 𝑟 ∪ 𝑠
𝑏 ′← graph-cut(𝐵,𝑆 ,𝑟 ′)
𝑄 .push({𝑟 ′, 𝑏 ′})

Fig. 9. Pseudo-code of the heuristic search for extracting the BSH boundary
given halfspace boundaries 𝐵 = {𝑏1, . . . , 𝑏𝑛 } and samples 𝑆 = {𝑠1, . . . , 𝑠𝑛 }.
Graph-cut(𝐵,𝑆 ,𝑟) computes the BSH boundary for {𝐵, 𝑆 } without the
sample-connectedness constraint andwithout using patches 𝑟 , and𝑄.𝑝𝑜𝑝 ()
returns the element {𝑟, 𝑏 } with the least energy 𝐸 (𝑏) .

𝑏 ∩ 𝑏𝑖 for some 𝑏𝑖 that does not contain a sample, either 𝐼 ∩ 𝑏 ′ = ∅ or
there is some patch 𝑝 ∈ 𝑏 adjacent to 𝐼 such that 𝑝 ∉ 𝑏 ′.

Proof. Suppose the statement is false, that is, all patches in 𝑏

adjacent to 𝐼 are in 𝑏 ′, and a subset 𝐼 ′ ⊆ 𝐼 is in 𝑏 ′ as well. Since 𝑏 ′ is
orientation-preserving, it is also a manifold (see Section 3.1). Let 𝑏𝑖
be the input boundary that contains 𝐼 . It follows from the manifold-

ness of 𝑏 ′, and that all patches in 𝑏 that surround 𝐼 (which do not lie

on 𝑏𝑖) are also on 𝑏
′
, that 𝐼 ′ is disconnected from other patches of 𝑏𝑖

that lie on 𝑏 ′. Since 𝐼 is an island of 𝑏, it does not contain any sample,

and hence 𝐼 ′ is also sample-free. So any connected component of

𝐼 ′ is a connected component of 𝑏 ′ ∩ 𝑏𝑖 without a sample, which

contradicts to the assumption that 𝑏 ′ is sample-connected. □

The observation motivates us to define a removable set of 𝑏 as ei-
ther an island of 𝑏 or one of the patches of 𝑏 adjacent to an island. With

this definition, we can show that the search algorithm is complete

(see proof in Appendix A):

Proposition 5.2. Given halfspace boundaries 𝐵 = {𝑏1, . . . , 𝑏𝑛}
and samples 𝑆 = {𝑠1, . . . , 𝑠𝑛}, the EXTRACT-BOUNDARY algorithm in
Figure 9 terminates in finite steps and returns the BSH shape boundary
defined by {𝐵, 𝑆}.
Despite its completeness, the best-first search has a prohibitive

time and space complexity, since both the degree and depth of the

search tree are upper bounded by the total number of patches. To

make the algorithm practical, we adopt a beam search by keeping

maximally 𝐾 states in the queue at any time. Specifically, when a

state is deleted from the queue, we compute all its children states,

add them to the queue, and then prune the queue to keep only

the 𝐾 states with the least energy. We found that the most greedy

(and efficient) setting using 𝐾 = 1 can already produce optimal

results in many of our test cases. Even in the case that the result is

sub-optimal, it takes much less effort to fix (by moving or adding

samples) than the result of the graph-cut algorithm without impos-

ing sample-connectedness. For consistency, we adopt 𝐾 = 1 in all

our experiments.

(a) (b) (c)

Fig. 10. Steps in the beam search (𝐾 = 1) for extracting the boundary of
the “S” shape. Black segments in (b,c) are patches marked for removal at
each state.

The beam search (with 𝐾 = 1) is demonstrated in 2D in Figure 10.

Without enforcing sample-connectedness, the initial graph-cut re-

sults in multiple short-cuts that minimize the boundary length. Each

step of the search recovers more of the missing parts of the intended

shape (letter “S”) by running graph-cut on an increasingly restrictive

search space with more patches marked as removed (colored black).

6 CONVERSION FROM OTHER REPRESENTATIONS
As a constructive representation, a BSH shape can be created from

scratch by incrementally adding halfspaces and their samples (see

examples in Section 7). A BSH shape can also be converted from

other representations, such as a B-rep or a CSG. By the Describabil-

ity Theorem 4.1, the conversion only needs to find a set of halfspaces

that fully bound the shape and sufficient samples on those halfs-

paces. This is conceptually simpler than converting into CSG, which

has to additionally infer the separating halfspaces and optimize

for the Boolean operations on the halfspaces [Shapiro and Vossler

1991]. As we shall see below, the halfspaces and samples needed

for representing a given shape as BSH can be obtained by either

existing geometry processing methods or simple heuristics.

6.1 Creating halfspaces
If the input shape is represented as a B-rep (e.g., a polygonal mesh),

the halfspaces can be created by first segmenting the shape boundary

and fitting each segment by a suitable representation of a halfspace.

Numerous methods are available for these tasks, including surface

segmentation [Shamir 2008], surface fitting using solid primitives

[Kaiser et al. 2019] and general implicit functions [Berger et al.

2017]. If the input shape is a CSG, we can simply use the same set

of halfspaces that defines the shape (the separating halfspaces will

be ignored after sample generation; see below).

6.2 Generating samples
It is straightforward to generate a sufficient (but possibly overly

redundant) set of samples to represent an input shape. For a B-

rep shape, dense samples can be obtained from the segments on

the shape’s boundary and associated with the corresponding fitted

halfspaces. For a CSG shape, we can first compute the patches in

the arrangement of the halfspaces that bound the shape by labelling

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

Boundary-Sampled Halfspaces: A New Representation for Constructive Solid Modeling • 53:9

(a) (b) (c) (d) (e)

Fig. 11. Given the halfspaces and an initial (dense) set of samples converted from a mesh (a), our algorithm starts with a necessary set of 15 samples (b),
one for each connected component of patches from the same halfspace, and incrementally adds one sample per iteration (c,d,e; added samples indicated by
arrows) until they are sufficient to reproduce the same shape boundary as the dense samples.

the arrangement cells using the CSG boolean expressions. Based on

the proof of the Describability Theorem 4.1, placing one sample on

each such patch is sufficient to reproduce the shape as BSH (note

that the separating halfspaces, which do not bound the shape, will

not be associated with any sample).

The dense samples created above could be overwhelming for a

user in downstream design tasks (e.g., Figure 11 (a)). To simplify user

control, and to leverage the sparsity afforded by the BSH definition,

we consider the problem of finding a minimal set of samples to repre-

sent a given shape. The problem can be formulated as follows: given

halfspace boundaries 𝐵 = {𝑏1, . . . , 𝑏𝑛} and some target boundary
𝑏 ⊆ ∪𝑖𝑏𝑖 (e.g., the BSH shape defined by the dense samples), find

sample sets 𝑆 = {𝑠1, . . . , 𝑠𝑛} such that 𝑏 is the BSH shape defined by

{𝐵, 𝑆} and that |𝑆 | is minimal. While the hardness of this problem is

unknown (we suspect it is NP-hard), we present a simple heuristic

that has a theoretical guarantee of termination and significantly

reduces the number of samples in our experiments.

The idea of this heuristic is to incrementally grow the sample

set until the target boundary is reproduced. Since a BSH is sample-

connected, we need at least one sample on each connected compo-

nent of𝑏∩𝑏𝑖 for each input boundary𝑏𝑖 . For visual intuitiveness, we
place the sample at the geodesic center of the respective connected

component. These samples form the initial sample set 𝑆 . At each

iteration of the algorithm, we compute the BSH shape boundary de-

fined by the current sample set, which we denote by 𝑏 ′. If 𝑏 ′ differs
with the target 𝑏, we consider those patches on 𝑏 that are missing

on 𝑏 ′ and are not associated with a sample yet (such patches always

exist, as we shall prove below), and we add a sample to the largest

of these patches. The pseudo-code of the algorithm is shown in Fig-

ure 12. The algorithm is guarantee to return a target-reproducing

sample set (see proof in Appendix B):

Proposition 6.1. Given halfspace boundaries 𝐵 = {𝑏1, . . . , 𝑏𝑛}
and a halfspace-bounding, orientation-preserving and sample-connected
boundary 𝑏 ⊆ ∪𝑖𝑏𝑖 , the algorithm GENERATE-SAMPLE in Figure 12
terminates in finite steps and returns a sample set 𝑆 such that 𝑏 is the
BSH shape boundary defined by {𝐵, 𝑆}.

The termination guarantee above holds when the BSH boundary

is extracted using the complete search algorithm in Figure 9, which

has prohibitive complexity. Fortunately, we can show that the guar-

antee remains when the more efficient beam search is used instead

GENERATE-SAMPLES (𝐵,𝑏)

//Initialize samples

Repeat for each 𝑏𝑖 ∈ 𝐵:
𝑠𝑖← ∅
Repeat for each connected component 𝑐 of 𝑏𝑖 ∩ 𝑏:

𝑥← geodesic center of 𝑐

𝑠𝑖← 𝑠𝑖 ∪ {𝑥}
//Incrementally add new samples

Repeat:

𝑏 ′← EXTRACT-BOUNDARY(𝐵, {𝑠1, . . . , 𝑠𝑛})
If 𝑏 = 𝑏 ′:

Return {𝑠1, . . . , 𝑠𝑛}
𝑝← largest sample-free patch in 𝑏 \ 𝑏 ′
𝑖← index of 𝑏𝑖 containing 𝑝

𝑥← geodesic center of 𝑝

𝑠𝑖← 𝑠𝑖 ∪ {𝑥}

Fig. 12. Pseudo-code of the algorithm for generating samples on halfspace
boundaries 𝐵 = {𝑏1, . . . , 𝑏𝑛 } that reproduce a target boundary 𝑏 ⊆ ∪𝑖𝑏𝑖
as BSH. It calls the EXTRACT-BOUNDARY algorithm in Figure 9.

and with the specific beam width of 𝐾 = 1 (which is used in our

experiments). This is stated and proved in Appendix B.

The algorithm is demonstrated in Figure 11 with the Boat example.

With the initial samples placed on connected components of patches

of the same halfspace boundary, the extracted boundary, shown in

(b), misses a number of parts of the boat, such as sections on the

side and along the top rim. The algorithm recovers those parts by

adding three samples in three iterations (shown in (c,d,e)). The total

number of samples (18) is significantly fewer than the initial dense

samples (a) as well as the number of patches on the shape boundary

(87).

7 RESULTS
We will demonstrate the use of BSH representation in shape design

and reverse engineering. Our current implementation considers half-

spaces represented either as basic primitives (e.g., planes, spheres,

cylinders, cones, tori) or an VIPSS implicit function [Huang et al.

2019]. Our choice of VIPSS is motivated by its ability to interpolate

sparse spatial locations (e.g., control points), which makes it ideal

for shape control. However, our formulation and algorithms apply

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

53:10 • Du, X. et al

(a) (b) (c) (d) (e) (f)

Fig. 13. (a-e): Edit sequence that modifies the letter “o” into the letter “e”. Each step introduces a new (linear) halfspace with a sample (marked by thick arrows)
and occasionally modifies samples on existing halfspaces (marked by thin arrows). (f): Result of the basic graph-cut algorithm (Section 5.1) without imposing
sample-connectedness.

to other halfspace representations as well, such as closed meshes,

parametric surfaces, and other types of implicit surfaces. To compute

the arrangement of the halfspaces, we first tessellate the primitives

and polygonize the implicit surfaces using Marching Cubes (we use

a uniform grid of size 64
3
), and we compute the mesh arrangement

using the recent method of [Cherchi et al. 2020].

7.1 Shape design
The flexibility and expressiveness of BSHmake it well suited for edit-

ing tasks that could have been difficult with either CSG or boundary

representations. Consider the 2D example in Figure 13, which shows

a sequence of edits (each adding one halfspace) from the letter “o”

to the letter “e”. Like CSG, BSH can naturally handle changes in

the combinatorial structure of the boundary. Such changes would

have to be carefully managed by the user if a boundary representa-

tion is used. On the other hand, the boundary samples in BSH offer

more direct control than Boolean expressions in CSG. For example,

the two linear halfspaces added in (d,e) only affect the parts of the

shape where the samples are located. Although the same effects

can be achieved using CSG, the Boolean expressions will become

more complex and additional halfspaces might be needed. The con-

trollability of BSH owes in large part to the sample-connectedness
constraint. As seen in (f), the shape can look quite different without

the constraint.

We show a fewmore 2D designs using BSH in Figure 14. Modeling

these shapes with CSG would require complex Boolean expressions

(even for the simple Star) and possibly additional halfspaces (e.g.,

where the shaft of the Musical Note joins the ellipse). These shapes

can be represented easily and intuitively in BSH using only one

sample on each segment of the boundary.

We demonstrate the flexibility of BSH in designing 3D shapes in

Figure 15. First, the union of a torus and four spheres (a) is created

by placing one sample on each sphere and four samples on the four

segments of the torus. After deleting two samples from the torus,

the corresponding segments of the torus are removed while the

other segments remain connected to the spheres (b). This shape

cannot be created using CSG without adding separating halfspaces

that prevent the torus segments from going beyond the spheres.

Using CSG, these additional halfspaces will need to be modified

when the spheres “slide” along the torus (c), and more separating

halfspaces are needed when new spheres are added to the torus (d).

Fig. 14. Several 2D shapes modeled by BSH. Halfspaces for the last two
shapes are not shown due to their complexity.

These edits can be achieved more easily with BSH by manipulating

the boundary samples.

Several 3D shapes designed with BSH are shown in Figure 16.

Although some of these shapes are quite simple (e.g., the first two

shapes are made up of 3 to 4 primitive halfspaces), none of them

can be described by CSG without non-trivial Boolean expressions

or introducing additional halfspaces.

7.2 Reverse engineering
As discussed in Section 6.1, many methods exist to construct the

halfspaces from a given input shape.We adopt the following protocol

in all our experiments to compute halfspaces (except for Figure 19),

although our sample-generation algorithm (Section 6.2) works with

any set of input halfspaces. Given a mesh, we use the feature-aligned

segmentation algorithm of [Zhuang et al. 2017] to partition the

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

Boundary-Sampled Halfspaces: A New Representation for Constructive Solid Modeling • 53:11

(a) (b)

(c) (d)

Fig. 15. Various BSH shapes created from one torus and several spheres. By
choosing which segment of the torus has a sample, different segments can
be kept or deleted while the shape remains a solid.

surface into smooth regions that meet along ridges and valleys. We

fit one halfspace to each segment as follows. We first fit each of

the five primitives using RANSAC [Schnabel et al. 2007] followed

by least-square refinement [Lukács et al. 1998]. If the fitting error

of one or multiple primitives is lower than a given tolerance 𝜖 ,

we select the least complex primitive according to this order of

ascending complexity: plane, cylinder, cone, sphere, and torus. If

the fitting errors of all primitives are greater than 𝜖 , we fit a VIPSS

implicit surface [Huang et al. 2019] in a coarse-to-fine fashion as

in [Carr et al. 2001]. Starting with three well-spaced points on the

segment (i.e., the control points), we iteratively add the point with

the greatest distance to the VIPSS surface interpolating the current

set of control points as a new control point, until such distance is

lower than 𝜖 .

The protocol above is controlled by the number of segments in the

surface segmentation and the fitting tolerance 𝜖 . We demonstrate

how these parameters affect the balance between fitting accuracy

and simplicity of the representation in Figure 17. Observe that fewer

segments (left column) lead to fewer halfspaces, but each halfspace

tends to require a VIPSS with a large number of control points, due

to the complex geometry of each segment. On the other hand, more

segments (middle column) means that each segment has a simpler

geometry, which can be fit with simpler primitives or VIPSS with

fewer control points, at the cost of increased number of halfspaces.

Finally, increasing the tolerance (right column) leads to even simpler

primitives and VIPSS with even fewer control points, but the halfs-

paces deviate more from the input geometry. In our experiments,

we set 𝜖 as 1/128 of the diagonal length of the bounding box and

choose the number of segments that is qualitatively comparable to

the last two columns.

More examples of free-form shapes converted to BSH are given

in Figures 1, 11 and 18. These shapes are fitted with a mixture of

primitives and VIPSS implicits. The BSH representation allows each

Fig. 16. Shapes modeled by BSH that cannot be represented by CSGwithout
additional halfspaces. For the first two shapes, input halfspaces are on the
left and the final shapes are on the right. The last shape (“Heart”) is shown
in two views, and the second view shows a halfspace represented as a VIPSS
implicit surface interpolating a sparse set of control points (red spheres).

surface partition, and their composition, to be easily modified while

maintaining the solidity of the result. We showcase a few interesting

edits, such as replacing the handles of the Vase, turning the Elk into

a bull, raising the pedals of the Flower, adjusting the seats on the

Boat, and adding arms to the Chair. Please refer to the accompanying

video for the editing process of some of these shapes.

Finally, we compare with reverse engineering of CSG shapes. Ex-

isting reverse CSG methods are limited to halfspaces represented

as primitives, in part due to the difficulty in constructing sepa-

rating halfspaces for higher-order surfaces [Shapiro and Vossler

1993]. Even in this limited setting, a key challenge for CSG reverse

engineering is recovering Boolean expressions that are intuitive

for downstream editing. As an example, the CAD model in Figure

19 (a) can be constructed using a fairly straight-forward sequence

of Boolean operations: first intersect a cylinder with a rectangu-

lar prism, then subtract three rectangular prisms (to create the

“notches”), and finally union with six tori. Taking the mesh as the

input, the state-of-the-art InverseCSG method [Du et al. 2018] pro-

duces a Boolean expression tree as shown in Figure 20 (top). The

partial shapes defined at three nodes of the tree (highlighted in the

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

53:12 • Du, X. et al
In
pu
t

Se
gm
en
ta
tio
n

BS
H

(c
ol
or
ed
 b
y
ha
lfs
pa
ce
s)

BS
H

(c
ol
or
ed
 b
y
ha
lfs
pa
ce
 ty
pe
s)

5 segments 8 segments

Tolerance: 1/128 Tolerance: 1/128 Tolerance: 1/48

Fig. 17. Halfspaces (middle and bottom rows) constructed from an input
shape (top row) with different number of segments and fitting tolerances
(as fraction of the diagonal of the bounding box). Halfspaces in the bottom
row are the same as those in the middle row but colored by their types
(planes, cylinders, spheres, and VIPSS) with VIPSS control points shown as
red spheres.

tree) are shown at the bottom. Observe that these Boolean opera-

tions are not only difficulty to understand but also unnecessarily

complex. In contrast, starting from the same set of halfspaces as used

by [Du et al. 2018], which consists of 17 primitives including planes,

cylinders, and tori, our algorithm produces a BSH with 23 samples

as shown in Figure 19 (b). The BSH shape can be conveniently edited

in a semantic-aware manner, such as removing a “shelf” and a few

tori (c) and changing the dimension of the primitives (d). These edits

would be difficult to achieve with the CSG representation in Figure

20.

To evaluate the effectiveness of the sample generation algorithm

(Section 6.2), we report in Table 1 the number of samples produced by

our algorithm for each example. The table also shows the number of

connected components of the same halfspace on the shape boundary

as well as the total number of patches on the boundary, which are

respectively the lower and upper bound of the number of samples

needed to represent the shape (due to sample-connectedness and

Proposition 4.1). Our greedy algorithm produces far fewer samples

than the upper bound and achieves the lower bound in all by two

examples.

8 LIMITATIONS AND FUTURE WORK
A key limitation of our work is that boundary extraction currently

requires the complete arrangement of all input halfspaces. Even

if the halfspaces are planes, the time complexity of arrangement

computation is cubic to the number of planes [Agarwal and Sharir

2000]. In our experiments, computing mesh arrangement using the

latest mesh arrangement algorithm [Cherchi et al. 2020] took over 5

Fig. 18. Free-form BSH shapes (Elk, Flower, Boat, and Chair) converted
from meshes and undergone editing of the halfspaces and/or their samples.
Top: each row shows the input segmented mesh, the converted BSH, and
result after editing. Selected halfspaces before and after editing are shown
with transparency. Bottom: each row shows the converted BSH from Figure
11 or 17 and two editing results.

Table 1. Comparing the number of samples generated by our algorithm
for each 3D reverse engineering example with the number of connected
components of the same halfspace (a lower bound) and the total number of
patches on the shape boundary (an upper bound). The Chair model is from
the middle column of Figure 17, and CAD is from Figure 19.

Vase Boat Chair Elk Flower CAD

#samples 13 18 8 16 8 23

#components 13 15 8 10 8 23

#patches 45 89 60 46 10 116

seconds for 17 halfspaces (Figure 19), which is already too slow for

interactive shape design. In contrast, boundary extraction on the

arrangement takes almost negligible time. Ideally, we would like to

be able to extract the boundary without computing the full arrange-

ment. There are several promising ideas in this direction. We could

compute the arrangement of only a portion of the input halfspace

boundaries that are likely to contain the shape. This portion could

be defined within some spatial range from the samples, as done for

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

Boundary-Sampled Halfspaces: A New Representation for Constructive Solid Modeling • 53:13

(a) (b)

(c)

(d)

Fig. 19. A CAD mesh segmented and fitted by primitives (a; showing two
views), the converted BSH shape (b; showing two views), and two edited
shapes with altered structure (e.g., fewer rings and a missing shelf) (c) and
modified primitive geometry (d).

Fig. 20. Top: The CSG tree converted from the mesh in Figure 19(a) using
InverseCSG [Du et al. 2018]. Bottom: Partial shapes evaluated at three
highlighted nodes of the tree (the entire shape is shown as a transparent
background).

linear halfspaces [Boulch et al. 2014; Chauve et al. 2010; Oesau et al.

2014]), or using a kinetic structure similar to [Bauchet and Lafarge

2020]. An alternative, divide-and-conquer idea is to group halfs-

paces that define nearby parts of the shape and compute the BSH

Fig. 21. Sensitivity of BSH to halfspaces that meet almost tangentially (e.g.,
the purple circle meeting the green and cyan lines).

shape for each group (which requires a much smaller arrangement

computation) before computing the entire BSH shape, treating each

group-wise BSH shape as a single halfspace. Lastly, user interaction

at the design phase can also help with defining the relevant portion

on, or the grouping of, the halfspaces.

While BSH is well suited for representing smooth surfaces meet-

ing at non-smooth junctions, it may have challenges in representing

surfaces that meet almost tangentially (i.e., they share similar tan-

gent planes). This is because the intersection of their underlying

halfspaces is likely missing on the arrangement, either due to nu-

merical inaccuracy or discretization. In the 2D example on the left

of Figure 21, the purple circular arc meets almost tangentially with

the green and cyan line segments. Slightly shrinking the purple

circle, however, causes it to miss the intersection with both lines

and results in an undesirable shape shown on the right. Robust

means for handling tangential connections would make BSH more

appealing for CAD objects, which often contain such connections

(e.g., fillets).

As a new shape representation, BSH has the potential to improve

existing geometric processing pipelines. For example, if BSH can

be directly created from an input cloud without first reconstruct-

ing a surface, it could lead to savings in both time and storage. In

particular, existing adaptive surface reconstruction schemes tend to

produce refined meshes near sharp features, which can be avoided

by BSH, because the sharp features are implicitly defined by inter-

secting smooth halfspaces. It would also be interesting to explore

BSH as a representation for geometric learning tasks. BSH pos-

sesses several desirable properties for learning. First, it is much

more compact than the raw point cloud or mesh. Second, it encodes

semantics of the shape, since each halfspace often captures a seman-

tic component. Third, without a hierarchical structure or boundary

connectivity information, BSH is more agile than both CSG and

B-reps (e.g., NURBS) as a part-based representation.

ACKNOWLEDGMENTS
This work is supported by NSF grant RI-1618685 and a gift from

Adobe Systems. We would like to thank anonymous reviewers for

their valuable suggestions.

REFERENCES
Pankaj K Agarwal and Micha Sharir. 2000. Arrangements and their applications. In

Handbook of computational geometry. Elsevier, 49–119.
Lionel Alberti, Bernard Mourrain, and Julien Wintz. 2008. Topology and arrangement

computation of semi-algebraic planar curves. Computer Aided Geometric Design 25,

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

53:14 • Du, X. et al

8 (2008), 631–651.

Jean-Philippe Bauchet and Florent Lafarge. 2020. Kinetic shape reconstruction. ACM
Transactions on Graphics (TOG) 39, 5 (2020), 1–14.

Eric Berberich, Pavel Emeliyanenko, Alexander Kobel, and Michael Sagraloff. 2012.

Arrangement computation for planar algebraic curves. In Proceedings of the 2011
International Workshop on Symbolic-Numeric Computation. 88–98.

Matthew Berger, Andrea Tagliasacchi, Lee M Seversky, Pierre Alliez, Gael Guennebaud,

Joshua A Levine, Andrei Sharf, and Claudio T Silva. 2017. A survey of surface

reconstruction from point clouds. In Computer Graphics Forum, Vol. 36. Wiley

Online Library, 301–329.

Gilbert Bernstein and Don Fussell. 2009. Fast, exact, linear booleans. In Computer
Graphics Forum, Vol. 28. Wiley Online Library, 1269–1278.

Alexandre Boulch, Martin de La Gorce, and Renaud Marlet. 2014. Piecewise-planar 3D

reconstruction with edge and corner regularization. In Computer Graphics Forum,

Vol. 33. Wiley Online Library, 55–64.

Suzanne F Buchele and Richard H Crawford. 2003. Three-dimensional halfspace con-

structive solid geometry tree construction from implicit boundary representations.

In Proceedings of the eighth ACM symposium on Solid modeling and applications.
135–144.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and

T. R. Evans. 2001. Reconstruction and Representation of 3D Objects with Radial

Basis Functions. In Proceedings of the 28th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH 2001). 67–76.

Malcolm S Casale and James E Bobrow. 1989. A set operation algorithm for sculptured

solids modeled with trimmed patches. Computer Aided Geometric Design 6, 3 (1989),

235–247.

Anne-Laure Chauve, Patrick Labatut, and Jean-Philippe Pons. 2010. Robust piecewise-

planar 3D reconstruction and completion from large-scale unstructured point data.

In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
IEEE, 1261–1268.

Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. 2020. Bsp-net: Generating compact

meshes via binary space partitioning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 45–54.

Gianmarco Cherchi, Marco Livesu, Riccardo Scateni, and Marco Attene. 2020. Fast and

robust mesh arrangements using floating-point arithmetic. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–16.

Matthijs Douze, Jean-Sébastien Franco, and Bruno Raffin. 2017. QuickCSG: Fast Arbi-

trary Boolean Combinations of N Solids. arXiv preprint arXiv:1706.01558 (2017).
Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela

Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. Inversecsg: Automatic

conversion of 3d models to csg trees. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1–16.

Laurent Dupont, Michael Hemmer, Sylvain Petitjean, and Elmar Sch"omer. 2007. Com-

plete, exact and efficient implementation for computing the adjacency graph of an

arrangement of quadrics. In European Symposium on Algorithms. Springer, 633–644.
Jack Edmonds and Richard M Karp. 1972. Theoretical improvements in algorithmic

efficiency for network flow problems. Journal of the ACM (JACM) 19, 2 (1972),

248–264.

Pierre-Alain Fayolle and Alexander Pasko. 2016. An evolutionary approach to the

extraction of object construction trees from 3D point clouds. Computer-Aided
Design 74 (2016), 1–17.

Pierre-Alain Fayolle, Alexander Pasko, Elena Kartasheva, Christophe Rosenberger, and

Christian Toinard. 2008. Automation of the volumetric models construction. In

Heterogeneous objects modelling and applications. Springer, 214–238.
Francisco R Feito, Carlos J Ogáyar, Rafael Jesús Segura, and ML Rivero. 2013. Fast

and accurate evaluation of regularized Boolean operations on triangulated solids.

Computer-Aided Design 45, 3 (2013), 705–716.

Karim Hamza and Kazuhiro Saitou. 2004. Optimization of constructive solid geometry

via a tree-based multi-objective genetic algorithm. In Genetic and Evolutionary
Computation Conference. Springer, 981–992.

Christoph Martin Hoffmann. 1989. Geometric and solid modeling. (1989).

Zhiyang Huang, Nathan Carr, and Tao Ju. 2019. Variational implicit point set surfaces.

ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–13.
Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy Boubekeur. 2019. A survey of

simple geometric primitives detection methods for captured 3D data. In Computer
Graphics Forum, Vol. 38. Wiley Online Library, 167–196.

John Keyser, Tim Culver, Mark Foskey, Shankar Krishnan, and Dinesh Manocha. 2004.

ESOLID - a system for exact boundary evaluation. Computer-Aided Design 36, 2

(2004), 175–193.

Pierre-Alain Langlois, Alexandre Boulch, and Renaud Marlet. 2019. Surface reconstruc-

tion from 3d line segments. In 2019 International Conference on 3D Vision (3DV).
IEEE, 553–563.

Jyh-Ming Lien, Vikram Sharma, Gert Vegter, and Chee Yap. 2014. Isotopic arrangement

of simple curves: An exact numerical approach based on subdivision. In International
Congress on Mathematical Software. Springer, 277–282.

Gabor Lukács, Ralph Martin, and Dave Marshall. 1998. Faithful least-squares fitting of

spheres, cylinders, cones and tori for reliable segmentation. In European conference
on computer vision. Springer, 671–686.

Bernard Mourrain, Jean-Pierre Técourt, and Monique Teillaud. 2005. On the compu-

tation of an arrangement of quadrics in 3d. Computational Geometry 30, 2 (2005),

145–164.

Gregory M Nielson. 2004. Radial hermite operators for scattered point cloud data

with normal vectors and applications to implicitizing polygon mesh surfaces for

generalized CSG operations and smoothing. In IEEE Visualization 2004. IEEE, 203–
210.

Sven Oesau, Florent Lafarge, and Pierre Alliez. 2014. Indoor scene reconstruction using

feature sensitive primitive extraction and graph-cut. ISPRS journal of photogramme-
try and remote sensing 90 (2014), 68–82.

Alexander Pasko, Valery Adzhiev, Alexei Sourin, and Vladimir Savchenko. 1995. Func-

tion representation in geometric modeling: concepts, implementation and applica-

tions. The visual computer 11, 8 (1995), 429–446.
Darko Pavić, Marcel Campen, and Leif Kobbelt. 2010. Hybrid booleans. In Computer

Graphics Forum, Vol. 29. Wiley Online Library, 75–87.

Aristides AG Requicha and Herbert B Voelcker. 1977. Constructive solid geometry.

(1977).

Aristides G Requicha. 1980. Representations for rigid solids: Theory, methods, and

systems. ACM Computing Surveys (CSUR) 12, 4 (1980), 437–464.
Jaroslaw Rossignac and Aristides Requicha. 1984. Constant-radius blending in solid

modelling. (1984).

Jaroslaw R Rossignac and Aristides AG Requicha. 1986. Offsetting operations in solid

modelling. Computer Aided Geometric Design 3, 2 (1986), 129–148.

Jaroslaw R Rossignac and Aristides AG Requicha. 1999. Solid modeling. Technical

Report. Georgia Institute of Technology.

Ruwen Schnabel, Roland Wahl, and Reinhard Klein. 2007. Efficient RANSAC for point-

cloud shape detection. In Computer graphics forum, Vol. 26. Wiley Online Library,

214–226.

Elmar Schömer andNicolaWolpert. 2006. An exact and efficient approach for computing

a cell in an arrangement of quadrics. Computational Geometry 33, 1-2 (2006), 65–97.

Ariel Shamir. 2008. A survey on mesh segmentation techniques. In Computer graphics
forum, Vol. 27. Wiley Online Library, 1539–1556.

Vadim Shapiro. 2002. Solid Modeling. Handbook of computer aided geometric design 20

(2002), 473–518.

Vadim Shapiro and Donald L Vossler. 1991. Construction and optimization of CSG

representations. Computer-Aided Design 23, 11 (1991), 4–20.

Vadim Shapiro and Donald L Vossler. 1993. Separation for boundary to CSG conversion.

ACM Transactions on Graphics (TOG) 12, 1 (1993), 35–55.
Sara Silva, Pierre-Alain Fayolle, Johann Vincent, Guillaume Pauron, Christophe Rosen-

berger, and Christian Toinard. 2005. Evolutionary computation approaches for shape

modelling and fitting. In Portuguese Conference on Artificial Intelligence. Springer,
144–155.

JM Smith and Neil A Dodgson. 2007. A topologically robust algorithm for Boolean

operations on polyhedral shapes using approximate arithmetic. Computer-Aided
Design 39, 2 (2007), 149–163.

Yannick Verdie, Florent Lafarge, and Pierre Alliez. 2015. LOD generation for urban

scenes. ACM Transactions on Graphics 34, ARTICLE (2015), 30.

Charlie CL Wang. 2010. Approximate boolean operations on large polyhedral solids

with partial mesh reconstruction. IEEE transactions on visualization and computer
graphics 17, 6 (2010), 836–849.

Qiaoyun Wu, Kai Xu, and Jun Wang. 2018. Constructing 3D CSG models from 3D raw

point clouds. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 221–232.

Brian Wyvill, Andrew Guy, and Eric Galin. 1999. Extending the csg tree. warping,

blending and boolean operations in an implicit surfacemodeling system. InComputer
Graphics Forum, Vol. 18. Wiley Online Library, 149–158.

Songgang Xu and John Keyser. 2013. Fast and robust Booleans on polyhedra. Computer-
Aided Design 45, 2 (2013), 529–534.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-

ments for solid geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–15.
Yixin Zhuang, Hang Dou, Nathan Carr, and Tao Ju. 2017. Feature-aligned segmentation

using correlation clustering. In Computational Visual Media, Vol. 2. 147–160.

A COMPLETENESS OF THE BOUNDARY EXTRACTION
ALGORITHM

We give the proof of Proposition 5.2:

Proof. We can organize all states explored by the algorithm in a

tree structure (the search tree), in which a child state is created by

adding a removable set to its parent state. The degree of the tree is

bounded by the number of removable sets on any given boundary,

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

Boundary-Sampled Halfspaces: A New Representation for Constructive Solid Modeling • 53:15

and the depth of the tree is bounded by the total number of patches

in∪𝑖𝑏𝑖 . Hence the tree has a finite size, and the algorithm terminates

in finite steps.

Since the algorithm always produces an orientation-preserving

and sample-connected solution, we only need to show that the so-

lution minimizes the energy 𝐸. In the search tree, the energy at

any child state is no smaller than that at its parent state, because

the graph-cut algorithm at the child state is applied to a graph

with increased edge weights from the graph at the parent state

(more edges have infinite weight). Since the algorithm performs

a best-first traversal of the search tree, the optimality of the algo-

rithm is guaranteed if the goal state (the BSH boundary, denoted

by 𝑏∗) exists in the search tree. To show the latter, we construct a

sequence of states {{𝑟0, 𝑏0}, {𝑟1, 𝑏1}, . . .} such that 𝑟0 = ∅ and 𝑟 𝑖+1
expands 𝑟 𝑖 by a removable set on 𝑏𝑖 that does not lie on 𝑏∗. By the

definition of removable sets and Proposition 5.1, the construction

can always proceed until reaching some state {𝑟𝑘 , 𝑏𝑘 } where 𝑏𝑘
is sample-connected. Since 𝑏𝑘 has the minimal energy among all

halfspace-bounding, orientation-preserving and sample-connected

boundaries that do not contain 𝑟𝑘 , and since𝑏∗ is one such boundary,
either 𝑏𝑘 = 𝑏∗ or 𝑏𝑘 has the same energy as 𝑏∗ (which only happens

for non-generic geometry; see Section 4.2). Since this sequence of

states is part of the search tree, the goal state (or a state with the

same energy) exists in the tree, which concludes the proof. □

B TERMINATION OF THE SAMPLE GENERATION
ALGORITHM

We give the proof of Proposition 6.1:

Proof. We only need to show that, if the BSH shape boundary

𝑏 ′ computed from the current sample set 𝑆 at each iteration differs

from 𝑏, than there exists some 𝑝 ∈ 𝑏 \ 𝑏 ′ that does not contain a

sample. If this is true, and since each iteration of the algorithm adds

one sample to a such a patch, the number of iterations is bounded

by the total number of patches on 𝑏. Upon termination, the sample

set reproduces the BSH shape boundary by construction. To show

the statement above, note that 𝑏 ′ minimizes the energy 𝐸 among all

halfspace-bounding, orientation-preserving, and sample-connected

boundaries that are subsets of ∪𝑖𝑏𝑖 , and one of such boundaries is

the target 𝑏. Hence 𝐸 (𝑏 ′) ≤ 𝐸 (𝑏). Since 𝑏 contains all the current

samples 𝑆 , 𝑏 ′ has to contains all samples in 𝑆 as well, otherwise it

will have a higher energy than 𝑏. If 𝑏 ≠ 𝑏 ′, and since 𝑏 cannot be

a strict subset of 𝑏 ′ (otherwise 𝑏 ′ will have a higher energy), there
must be patches in 𝑏 that are missing in 𝑏 ′, and these patches have

to be free of samples (which are already included in 𝑏 ′). □

We next show that the algorithm still terminates when the com-

plete search for extracting the BSH boundary is replaced by a beam

search with width 𝐾 = 1:

Proposition B.1. The algorithm GENERATE-SAMPLE in Figure
12 terminates in finite steps if the EXTRACT-BOUNDARY algorithm
is replaced with a beam search of width 𝐾 = 1.

Proof. Similar to the proof of Proposition 6.1, it suffices to show

that there exists some 𝑝 ∈ 𝑏 \ 𝑏 ′ that does not contain a sample

if 𝑏 ≠ 𝑏 ′. Consider the beam search algorithm for extracting the

boundary 𝑏 ′ given the current set of samples 𝑆 . Since the queue has

size 1, the search iteratively retrieves a state from the queue, explores

all its child states, and places the child state with the least boundary

energy back to the queue. Let the sequence of states that are placed

into the queue during the search be {{𝑟1, 𝑏1}, . . . , {𝑟𝑘 , 𝑏𝑘 }}, where
𝑟 𝑖 is the set of patches marked for removal and 𝑏𝑖 is the resulting

boundary computed by graph-cut.

We will show that the following is true of 𝑟 𝑖 for all 𝑖 = 1, . . . , 𝑘 :

either 𝑟 𝑖∩𝑏 = ∅ (called Type I), or there is some patch 𝑝 ∈ 𝑟 𝑖∩𝑏 such
that 𝑝 contains no sample in 𝑆 (called Type II).We prove by induction.

For 𝑖 = 1, since 𝑟1 is empty, it is trivially Type I. Now suppose the

statement holds up to some 𝑖 < 𝑘 . The next state, {𝑟 𝑖+1, 𝑏𝑖+1} is
constructed by adding some removable set on 𝑏𝑖 to 𝑟 𝑖 , such that the

resulting boundary computed by graph-cut without the removed

patches has the least energy among all removable sets of 𝑏𝑖 . If 𝑟 𝑖

is Type I, and since 𝑏 is sample-connected, Proposition 5.1 ensures

that there exists some removable set 𝑡 of 𝑏𝑖 such that 𝑡 ∩𝑏 = ∅. Since
𝑟 𝑖 ∩ 𝑏 = ∅, (𝑡 ∪ 𝑟 𝑖) ∩ 𝑏 = ∅, and hence performing graph-cut after

removing patches 𝑡 ∪ 𝑟 𝑖 would result in a boundary whose energy is

no greater than 𝐸 (𝑏). Hence we conclude that 𝐸 (𝑏𝑖+1) ≤ 𝐸 (𝑏), and
therefore 𝑏𝑖+1 must contain all samples in 𝑆 . This implies that 𝑟 𝑖+1

must not contain any sample, and hence it will fall into either Type

I or Type II. On the other hand, if 𝑟 𝑖 is Type II, and since 𝑟 𝑖 ⊂ 𝑟 𝑖+1,
𝑟 𝑖+1 is Type II as well.

Finally, note that 𝑏𝑘 is the boundary 𝑏 ′ returned by the beam

search. If 𝑟𝑘 is Type I, and since 𝑏 (like 𝑏𝑘) does not contain any

patch in 𝑟𝑘 , we know 𝐸 (𝑏𝑘) ≤ 𝐸 (𝑏), and the argument in the proof

of Proposition 6.1 shows that there is a sample-free patch 𝑝 ∈ 𝑏 \𝑏𝑘
if 𝑏 ≠ 𝑏𝑘 . If 𝑟𝑘 is Type II, the patch 𝑝 ∈ 𝑟𝑘 ∩ 𝑏 that does not contain

any sample is the one that we seek, since it lies on 𝑏 but not 𝑏𝑘 . □

ACM Trans. Graph., Vol. 40, No. 4, Article 53. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Related work
	2.1 Representations of solid models
	2.2 CSG
	2.3 Piecewise planar reconstruction
	2.4 Arrangements

	3 Shape representation
	3.1 Shape criteria
	3.2 Shape definition

	4 Properties
	4.1 Existence
	4.2 Uniqueness
	4.3 Describability

	5 Boundary extraction
	5.1 Without sample-connectedness
	5.2 With sample-connectedness

	6 Conversion from other representations
	6.1 Creating halfspaces
	6.2 Generating samples

	7 Results
	7.1 Shape design
	7.2 Reverse engineering

	8 Limitations and future work
	Acknowledgments
	References
	A Completeness of the boundary extraction algorithm
	B Termination of the sample generation algorithm

