

BOUNDARY-SAMPLED HALFSPACES:

A new representation for constructive solid modeling

Xingyi Du	Washington University in St. Louis
Qingnan Zhou	Adobe Research
Nathan Carr	Adobe Research
Tao Ju	Washington University in St. Louis

→ CONSTRUCTIVE SOLID GEOMETRY (CSG)

[Requicha and Voelcker 1977]

→ CONSTRUCTIVE SOLID GEOMETRY (CSG)

[Requicha and Voelcker 1977]

halfspace B

→ CONSTRUCTIVE SOLID GEOMETRY (CSG)

[Requicha and Voelcker 1977]

 $(A \cap D \cap F) \cup$ $(A \cap E \cap J) \cup$ $(B \cap G \cap I) \cup$ $(C \cap H \cap I \cap G)$

 $(A \cap D \cap E \cap C) \setminus ((A \cap \overline{F} \cap \overline{G} \cap C) \cup (A \cap \overline{I} \cap \overline{J} \cap C) \cup (G \cap \overline{B} \cap C \cap \overline{H}))$

→ OUR CONTRIBUTION

- A new representation for solid models from halfspaces
 - No need for hidden halfspaces
 - Intuitive and light-weight
 - Easy for reverse engineering

→ BOUNDARY-SAMPLED HALFSPACES (BSH)

Representation:

- A set of halfspaces
- A set of samples

BSH shape:

• A subset of halfspace boundaries that bounds a solid:

→ BOUNDARY-SAMPLED HALFSPACES (BSH)

Representation:

- A set of halfspaces
- A set of samples

BSH shape:

- A subset of halfspace boundaries that bounds a solid:
 - Preserves halfspace orientation
 - Contains as many samples as possible
 - Has the least boundary length (area)

model a triangle using our representation

© 2021 SIGGRAPH. ALL RIGHTS RESERVED.

adding a semi-circle leads to corner cutting of the triangle

move a sample to recover the corner

middle part of the triangle can also be truncated

sample connected: each boundary tile contains at least 1 sample

→ BOUNDARY-SAMPLED HALFSPACES (BSH)

Representation:

- A set of halfspaces
- A set of samples

BSH shape:

- A subset of halfspace boundaries that bounds a solid:
 - Preserves halfspace orientation
 - Contains as many samples as possible
 - Has the least boundary length (area)
 - Is sample connected

DESCRIBABILITY

 $\rightarrow \cdot$

• BSH can describe any shape using only halfspaces that bound the shape and sufficient number of samples.

CSG

 $(A \cap D \cap F) \cup$ $(A \cap E \cap J) \cup$ $(B \cap G \cap I) \cup$ $(C \cap H \cap I \cap G)$

 \leftrightarrow

inside/outside labeling of arrangement cells

min-cut over a weighted directed graph [Boulch et al. 2014] [Oesau et al. 2014] [Chauve et al. 2010] [Verdie et al. 2015] [Bauchet and Lafarge 2020]

- Graph-cut result may not be sample connected
 - Island: a tile that contains no sample

- Graph-cut result may not be sample connected
 - Island: a tile that contains no sample
- Observation: for each island, either the island or one of its adjacent patches on the arrangement does not lie on BSH.

22

 \leftrightarrow

- Graph-cut result may not be sample connected
 - Island: a tile that contains no sample
- Observation: for each island, either the island or one of its adjacent patches on the arrangement does not lie on BSH.

23

 \leftrightarrow

- A state-space search algorithm
 - Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)

• A state-space search algorithm

 \leftrightarrow

- Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)
- New states are expanded by computing graph-cut in the existing state and setting one of the islands or its adjacent patches to be unusable

• A state-space search algorithm

 \leftrightarrow

- Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)
- New states are expanded by computing graph-cut in the existing state and setting one of the islands or its adjacent patches to be unusable

• A state-space search algorithm

- Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)
- New states are expanded by computing graph-cut in the existing state and setting one of the islands or its adjacent patches to be unusable
- States are explored in best-first order

• A state-space search algorithm

- Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)
- New states are expanded by computing graph-cut in the existing state and setting one of the islands or its adjacent patches to be unusable
- States are explored in best-first order
- Greedy search algorithm
 - Only expand the best state

• A state-space search algorithm

- Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)
- New states are expanded by computing graph-cut in the existing state and setting one of the islands or its adjacent patches to be unusable
- States are explored in best-first order
- Greedy search algorithm
 - Only expand the best state

• A state-space search algorithm

- Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)
- New states are expanded by computing graph-cut in the existing state and setting one of the islands or its adjacent patches to be unusable
- States are explored in best-first order
- Greedy search algorithm
 - Only expand the best state

• A state-space search algorithm

- Each "state" is a set of patches of arrangement that cannot be used (length set to infinity)
- New states are expanded by computing graph-cut in the existing state and setting one of the islands or its adjacent patches to be unusable
- States are explored in best-first order
- Greedy search algorithm
 - Only expand the best state

Meshes BSH

- halfspaces
- samples

→ REVERSE ENGINEERING: COMPARISON

F.

- A new representation for solid models from halfspaces
 - No need for hidden halfspaces
 - Intuitive and light-weight
 - Easy to reverse engineer
- Technical contributions
 - Theoretical analysis of properties
 - Algorithm for boundary extraction and reverse engineering
- Limitation: scalability (due to arrangement computation)

Video, code, program and more at

https://duxingyi-charles.github.io/publication/boundary-

sampled-halfspaces/

